Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 August 2021 | Story Leonie Bolleurs | Photo Supplied
UFS scientists involved in revolutionary protein structure prediction
Left: Dr Ana Ebrecht, a former postdoctoral student of the UFS, was part of the team that validated the data for the Science paper. Right: Prof Dirk Opperman was involved in a revolutionary finding in biology, which predicts the structure of a protein. His work in collaboration with other scientists has been published in Science.

Prof Dirk Opperman, Associate Professor in the Department of Microbiology and Biochemistry at the University of the Free State (UFS), in collaboration with Dr Ana Ebrecht (a former postdoc in the same department) and Prof Albie van Dijk from the Department of Biochemistry at the North-West University (NWU), was part of an international collaboration of researchers who participated in solving an intricate problem in science – accurate protein structure prediction.

The team of researchers recently contributed to an influential paper describing new methods in protein structure prediction using machine learning. The paper was published in the prestigious scientific journal, Science.

“These new prediction methods can be a game changer,” believes Prof Opperman.

“As some proteins simply do not crystalise, this could be the closest we get to a three-dimensional view of the protein. Accurate enough prediction of proteins, each with its own unique three-dimensional shape, can also be used in molecular replacement (MR) instead of laborious techniques such as incorporating heavy metals into the protein structure or replacing sulphur atoms with selenium,” he says.

Having insight into the three-dimensional structure of a protein has the potential to enable more advanced drug discovery, and subsequently, managing diseases.

Exploring several avenues …

According to Prof Opperman, protein structure prediction has been available for many years in the form of traditional homological modelling; however, there was a big possibility of erroneous prediction, especially if no closely related protein structures are known.

Besides limited complementary techniques such as nuclear magnetic resonance (NMR) and electron microscopy (Cryo-EM), he explains that the only way around this is to experimentally determine the structure of the protein through crystallisation and X-ray diffraction. “But it is a quite laborious and long technique,” he says.

Prof Opperman adds that with X-ray diffraction, one also has to deal with what is known in X-ray crystallography as the ‘phase problem’ – solving the protein structure even after you have crystallised the protein and obtained good X-ray diffraction data, as some information is lost.

He states that the phase problem can be overcome if another similar-looking protein has already been determined.

This indeed proved to be a major stumbling block in the determination of bovine glycine N-acyltransferase (GLYAT), a protein crystallised in Prof Opperman’s research group by Dr Ebrecht, currently a postdoc in Prof Van Dijk’s group at the NWU, as no close structural homologous proteins were available.

“The collaboration with Prof Opperman’s research group has allowed us to continue with this research that has been on hold for almost 16 years,” says Prof Van Dijk, who believes the UFS has the resources and facilities for structural research that not many universities in Africa can account for.

The research was conducted under the Synchrotron Techniques for African Research and Technology (START) initiative, funded by the Global Challenges Research Fund (GCRF). After a year and multiple data collections at a specialised facility, Diamond Light Source (synchrotron) in the United Kingdom, the team was still unable to solve the structure.

Dr Carmien Tolmie, a colleague from the UFS Department of Microbiology and Biochemistry, also organised a Collaborative Computational Project Number 4 (CCP4) workshop, attended by several well-known experts in the field. Still, the experts who usually participate in helping students and researchers in structural biology to solve the most complex cases, were stumped by this problem.

Working with artificial intelligence

“We ultimately decided to turn to a technique called sulphur single-wavelength anomalous dispersion (S-SAD), only available at specialised beam-lines at synchrotrons, to solve the phase problem, says Prof Opperman.

Meanwhile, Prof Randy Read from the University of Cambridge, who lectured at the workshop hosted by Dr Tolmie, was aware of the difficulties in solving the GLYAT structure. He also knew of the Baker Lab at the University of Washington, which is working on a new way to predict protein structures; they developed RoseTTAaFold to predict the folding of proteins by only using the amino acid sequence as starting point.

RoseTTAaFold, inspired by AlphaFold 2, the programme of DeepMind (a company that develops general-purpose artificial intelligence (AGI) technology), uses deep learning artificial intelligence (AI) to generate the ‘most-likely’ model. “This turned out to be a win-win situation, as they could accurately enough predict the protein structure for the UFS, and the UFS in turn could validate their predictions,” explains Prof Opperman.

A few days after the predictions from the Baker Lab, the S-SAD experiments at Diamond Light Source confirmed the solution to the problem when they came up with the same answer.

Stunning results in a short time

“Although Baker’s group based their development on the DeepMind programme, the way the software works is not completely the same,” says Dr Ebrecht. “In fact, AlphaFold 2 has a slightly better prediction accuracy. Both, however, came with stunningly good results in an incredibly short time (a few minutes to a few hours),” she says.

Both codes are now freely available, which will accelerate improvements in the field even more. Any researcher can now use that code to develop new software. In addition, RoseTTAFold is offered on a platform accessible to any researcher, even if they lack knowledge in coding and AI.

News Archive

Researcher wins prize for her work to reduce environmental pollution
2016-12-26

Description: Josepha Zielke Tags: Josepha Zielke 

Prof Danie Vermeulen, Dean of the Faculty of Natural
and Agricultural Sciences, and Josepha Zielke, a
PhD student at the Institute for Groundwater studies at the
University of the Free State.
Photo: Leonie Bolleurs

Josepha Zielke, a PhD student at the Institute for Groundwater Studies at the University of the Free State (UFS), received the prize for the best student presentation at the International Mine Water Association (IMWA) symposium in Leipzig, Germany, this year. Her paper was titled Fine Ash Leaching in Tailings Dams – An Impact on the Underlying Aquifers?
 
Zielke said: “It is an honour to receive this prize as a student. IMWA is a big association which allows you to establish a network with other scientists, to exchange opinions and ideas and to gain new inspiration for your own work. It was exciting and informative to hear about the research conducted around the world and to meet the researchers themselves.”
 
Born in Germany, Zielke always wanted to study overseas. During an exchange year in Grade 11, she visited South Africa. When she had to make a decision about in which country to complete her studies, South Africa was first choice as she was familiar with the people and the country.
 
Zielke joins leading institute on groundwater research in the country
She completed her BSc Hons in Geology at the Nelson Mandela Metropolitan University. After working for a year in exploration, she decided to focus her studies on water-related problems which  has been a growing issue, not only in South Africa, but in many places around the world. Zielke heard that the UFS Institute for Groundwater Studies was the leading institute on groundwater research in the country, and decided to join the university.
 
After completing her MSc research, An analysis of the geochemical weathering profile within a fine ash tailings dam, Mpumalanga, South Africa, Zielke started the research for her PhD project on groundwater pollution along a fault system in Mpumalanga.
 
Research adding value to the environment by reducing pollution
She explains the focus of her research: “Several production plants and mine waste facilities are located on or near these geological structures which could be a possible cause of ground and surface water pollution. With the aid of geophysical ground surveys (using electromagnetics and electrical resistivity tomography), aquifer and tracer tests, we are trying to determine where the pollution is coming from, how far it has been distributed and to model the potential risks.
 
“This research will add value to the environment by preventing or at least reducing pollution leaking into the environment. Industrial sites always have a negative footprint on the environment but at least we try and contain it by finding the cause of ground and surface water pollution. Thereafter we try and solve the pollution problem or at least mitigate the damage to prevent the spreading of ground and surface water pollution in the area.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept