Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 June 2021 | Story Dr Patricks Voua Otomo
Dr Patricks Voua Otomo
Dr Patricks Voua Otomo is the Head of the Ecotoxicology Research Laboratory and Subject Head: Zoology and Entomology in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS).

The month of June is earmarked for the celebration of National Environment Month, with the South African government and captains of industry leading the way by stimulating awareness on environmental issues and challenging everyone to become agents for change. World Environment Day, the biggest annual event of the United Nations Environment Programme (UNEP), is commemorated on 5 June, with the aim of galvanising positive environmental action. The University of the Free State (UFS) – through researchers from the Afromontane Research Unit (ARU) housed on the Qwaqwa Campus of the UFS – is playing its part in the fight against pollution, and especially water pollution in the eastern Free State.

The ARU initiated a research project in 2021, focusing on the assessment of the quality of local natural water resources in order to foster sustainable development in Phuthaditjhaba, and because of the recurring challenges pertaining to water quality and quantity in the Maluti-a-Phofung (MAP) Local Municipality. For the first such project focusing exclusively on pollution issues in a select Afromontane region – led by Dr Patricks Voua Otomo, Head of the Ecotoxicology Research Laboratory and Subject Head: Zoology and Entomology in the Faculty of Natural and Agricultural Sciences – a vibrant team of ARU scientists and students set out to determine the ecotoxicological and bacteriological state of water resources in MAP. With the permission of MAP, ARU researchers and students were allowed access to municipal wastewater treatment plants in the towns of Phuthaditjhaba and Harrismith, and ethical clearance from the UFS permitted limited environmental sampling and laboratory testing using live organisms such as snails and earthworms.

Focusing on the quality of natural water bodies
In November 2016, Ms Portia Mosolloane (2016 honours student) presented the preliminary findings of the project at an ARU colloquium held in the Golden Gate Highlands National Park. Her work has drawn attention to potential localised incidents of terrestrial contamination linked to sewage sludge management in the region. Those early findings were published internationally, and in May 2018, Ms Mosolloane went on to present her research at the 28th Annual Meeting of the Society of Environmental Toxicology and Chemistry (SETAC) in Rome, Italy.

In an attempt to mitigate sewage sludge-induced soil pollution, Ms Nomasonto Dlamini (master’s student) conducted research from 2018 on the potential beneficial effects of biochar amendment on the sewage sludge as an alternative management strategy. The results revealed that mixing biochar with sewage sludge prior to open-air storage would significantly decrease the toxic effects on terrestrial organisms such as oligochaetes. This work is still ongoing, although in May 2019, Ms Dlamini presented some of her findings at the Fifth World Congress on Risk Development and Resilience in Cape Town.

From the start, an important focus of our research has been the quality of natural water bodies in our region and its ability to support life. In 2020, Ms Mosolloane graduated cum laude with a Master of Science, having successfully established that, particularly along polluted and degraded sections of our rivers, the diversity of riparian invertebrate was heavily skewed and reduced. Her work on water quality has suggested that our failing wastewater treatment plants (due to ageing, capacity overload, and poor management) are contributing to the release of pathogenic bacteria such as Escherichia coli in the local rivers.

Mr Mbuyiselwa Moloi (a 2020 Master of Science graduate from the project) found through his research that wastewater treatment plants only contribute partially to river pollution in the region. His work, focusing on metal pollution in the Elands River (Phuthaditjhaba) and the Wilge River (Harrismith), established that although there is evidence of metal enrichment after wastewater processing by the treatment plants, some of the metal in the rivers emanates from the communities that, due to the lack of adequate refuse removal services, often dispose of their household waste directly into the rivers. Mr Moloi’s research was presented at the 2019 International Mountain Conference in Innsbruck, Austria, and was subsequently published in the International Journal of Hygiene and Environmental Health in 2020.

Ms Matseleng Semase (a 2020 Master of Science graduate from the project) worked on establishing whether the quality of the effluent released from the local wastewater treatment plants was conducive to supporting aquatic life. Using a snail species in the laboratory, she found that although of substandard quality, the effluent released from the treatment plants did not hamper growth and reproduction in her test organism. This pointed to the fact that corrective measures could still be taken to reduce the harmful impact of wastewater management processes on river health in the eastern Free State. Ms Semase’s work was presented at the 9th SETAC Africa Biennial Conference held in Cape Town in 2019, and her findings were submitted for publication in Environmental Science and Pollution Research.

First such project focusing exclusively on pollution issues
Some of our findings infused new life into the project, steering our work in unexpected directions. Early in the project we came to realise that there was a paucity of research focusing on pollution in mountain areas in South Africa and in Africa at large. Mr Hendrik Stander joined the project in 2019 as a master’s student. His task was to work on the development of fast and reliable behavioural testing protocols that could be used in the project. His preliminary findings were presented at the 40th annual meeting of SETAC North America in Toronto, Canada, and were subsequently published in the Bulletin of Environmental Contamination and Toxicology. Ms Sanele Mnkandla, who joined the project as a PhD candidate in 2020, is working on proposing water remediation strategies that could help improve the state of the rivers in the region. She recently submitted a review article on the topic for publication in Environmental Evidence. Another review article in the making and focusing on literature evidence of mountain pollution in Africa, is the brainchild of Dr Ozekeke Ogbeide, a collaborator from the University of Benin (Nigeria), who co-supervised several students and co-authored some of the scientific publications from the project.

This ongoing research, under the auspices of the ARU, is the first such project focusing exclusively on pollution issues in a select Afromontane region. With Ms Dlamini, Mr Stander, and Ms Mnkandla still actively involved in the project, we look forward to finding more answers to the environmental challenges of the eastern Free State and to working together with MAP towards environmental sustainability in the region.

News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept