Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2021 | Story Leonie Bolleurs | Photo Supplied
The Department of Engineering Sciences (EnSci) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists to create a green concrete that will reduce the impact of cement on the environment.

Conventional cement production is responsible for more than 6% of the overall carbon emissions in the world, which ultimately affects global warming.

The Department of Engineering Sciences (EnSci) at the University of the Free State (UFS) – under the leadership of Dr Abdolhossein Naghizadeh – is heading a collaboration of scientists from universities in South Africa and abroad to create a green concrete that will reduce the impact of cement on the environment.

This product has the potential to be used as an alternative to conventional concrete in large-scale constructions such as residential buildings and infrastructure, as well as small-scale constructions such a pavements and brickworks. 

Dr Nagizadeh, whose passion is cement and green concrete, says the idea of eco-friendly concrete was considered by European researchers a few years ago; however, this technology is still in its initial stages and has not been researched and employed at industrial scale yet. He believes that it is due to the complexity of the preparation process, and the relatively aggressive chemicals used in green concrete mixtures.

Expertise and equipment 

With his knowledge and experience of the product, Dr Naghizadeh – who joined EnSci in 2020 – has been appointed project leader of a collaborative group of scientists from the Universities of Johannesburg, KwaZulu-Natal, Yaoundé in Cameroon, and the Erzurum Technical University in Turkey.  

“Since there are only a limited number of researchers in this field, EnSci is benefiting from the expertise of this international collaboration. The proficiency of this group of scientists are keeping the project current, based on the latest findings in the research area,” says Louis Lagrange, Head of the Department of Engineering Sciences. 

Based on this new capacity, the department decided to establish and equip a new laboratory facility dedicated to cement and concrete research, with a specific current focus on green concrete. 

In this laboratory, they want to create formulations of green concrete, based on user-friendly materials. Furthermore, they aim to simplify the preparation and mixing process. “This can introduce a more eco-friendly, desirable product that can easily be employed extensively in the construction industry,” says Lagrange.

Benefits and other advantages

Besides its ability to reduce the impact on the environment through reduced carbon emissions, the product is also described to perform at equal or even superior strength and durability compared to conventional concrete, with potentially substantial environmental and economic benefits. 

This product is also primarily made from waste materials or industrial by-products. Dr Naghizadeh explains it as follows: “Normal concrete consists of conventional (Portland) cement, sand, stone and water, while in green concrete the conventional cement part of the concrete mix is replaced by industrial wastes or by-products and alkali solutions. These alternative materials are mostly aluminosilicate materials such as fly ash (residue from coal burning process in power plants) and slag (waste material from iron extraction processes).”

“Using these waste substances as binding material in green concrete can, apart from the environmental benefits, also reduce waste and contribute to the circular economy. Annually, more than 36 million tons of fly ash are produced in South Africa alone, of which more than 90% is deposited at landfill sites. Reuse of these waste materials will moderate the related waste deposition issues, such as air and groundwater pollution.”

Production of green concrete

Currently, green concrete is mostly produced in two parts: a solid raw material and an alkali activation solution. With their project, the research group wants to develop green concrete in a powdered form, to be mixed with water, instead of a chemical. Dr Nagizadeh estimates that the construction industry will be able to benefit from their work in about two years’ time when they will have a user-friendly green concrete product ready. 

Apart from putting an eco-friendlier concrete on the market, this project is also establishing a brand-new research niche in the UFS Department of Engineering Sciences. According to Lagrange, this research has the ability to attract postgraduate students and other researchers. He is also looking forward to the international academic recognition that EnSci will receive through published articles in leading international journals, and the participation of researchers in accredited conferences arising from this project. 

Lagrange is pleased that the project is establishing EnSci as a research player of note in the engineering field, specifically in the green engineering field. 

News Archive

Afrikaans can be learnt online for the first time
2017-11-29

 Description: Afrikaans online Tags: Department of Afrikaans and Dutch, German and French, Prof Angelique van Niekerk, Afrikaans online, Gesellig Afrikaans, VivA 

The launch of the online course in Afrikaans at the University of the Free State
took place in the Centenary Complex at the Bloemfontein Campus on 21 November 2017.
From the left are Profs Francis Petersen, Rector and Vice-Chancellor; Angelique van Niekerk,
Head: Department of Afrikaans and Dutch, German and French; and Gerhard van Huyssteen,
Executive Director: Virtual Institute for Afrikaans.
Photo: Supplied

There is a need among visiting international students and foreign visiting lecturers and researchers to be able to speak Afrikaans. According to Prof Angelique van Niekerk, this is the reason why the Department of Afrikaans and Dutch, German and French at the University of the Free State (UFS) has been offering short courses in Afrikaans on campus for more than 15 years.

As from January 2018, those people wishing to learn Afrikaans outside of the UFS campus will be able to do so fully online. This is the first time that Afrikaans can be learnt fully online. The course is part of a short learning programme, Gesellig Afrikaans 1 and 2, which has been presented at the UFS since 2007. It is presented with the support of the Virtual Institute for Afrikaans (VivA), and Afrikaans can now be learnt as foreign language globally.

Need to speak Afrikaans
 
Prof Van Niekerk, Head of the Department of Afrikaans and Dutch, German and French, believes people who come in contact with the language have a need to learn to speak Afrikaans. “Afrikaans is a vernacular in the workplace, education, and social circles, especially in Bloemfontein, the Free State, and South Africa,” she says.

On average, 15 students per semester are enrolling for the existing contact-based course. Prof Van Niekerk says these students are from countries such as The Netherlands, Belgium, Germany, France, Poland, Lesotho, Zimbabwe, and some are from the East.

English used as teaching medium 
In 2018, the 20-week course will be taught online via the VivA website or on campus through contact sessions (within 13 weeks). “The online course for international students is currently being marketed for the first time, and in 2018 we will officially be enrolling international students for the online course from beyond UFS borders,” says Prof Van Niekerk.

The teaching medium will be English, with all the information and explanations taking place in Afrikaans and English. Supporting material such as Afrikaans films, music, pronunciation guidelines, and continuous self-assessment are part of the online course material.

Click here to see the course structure of the online programme.

Direct enquiries to Prof Van Niekerk at vnieka@ufs.ac.za, or geselligafrikaans@gmail.com or visit www.gesellig-afrikaans.org

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept