Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 May 2021 | Story Leonie Bolleurs | Photo Leonie Bolleurs
The Maloti-Drakensberg is known as the ’water tower of Southern Africa’, as it is the largest provider of fresh water in the region. If the alpine system collapses, the water production will be detrimentally impacted.

The Afromontane Research Unit (ARU) of the University of the Free State, based in Phuthaditjhaba South Africa, is partnering with several institutions of higher learning, relevant forums, foundations, and policy makers in Africa in an attempt to expand its alpine research.

The research unit is joining forces with the University of Helsinki (Finland) and the National University of Lesotho (NUL) for a National Research Foundation (NRF) award to the University of Pretoria on using fine-scale functional and compositional variation in alpine plants to predict the impact of climate change. According to Dr Ralph Clark, Director of the ARU, this project will expand understanding of the ecology of the alpine zone in the Maloti-Drakensberg, and its similarity (or dissimilarity) with other alpine and tundra environments. 

First step towards sustainability and restoration

A complimentary visit by Alex Hickman, Chair of the African Mountain Research Foundation (AMRF), to the Bvumba Mountains in Zimbabwe, the ARU, and Afriski, laid the psychological foundations for the first two AMRF mountain observatories, as well as gaining support from Afriski as a focus area for alpine studies in the Maloti-Drakensberg. 

Dr Clark explains that the Maloti-Drakensberg is known as the ’water tower of Southern Africa’, as it is the largest provider of fresh water in the region. “The alpine system is critical to this water provisioning function but is under tremendous pressure from intense communal rangeland degradation. If the alpine system collapses, the water production will be detrimentally impacted,” he says.

“Understanding this alpine system holistically is the first step to sustainability and restoration in a social-ecological paradigm,” he adds.

Building capacity for mountain research

The ARU is leading two University Staff Doctorate Programmes (USDPs), both in partnership with the University of Venda, which supports 20 young academics to achieve their doctorates. Dr Clark says while doctoral topics are diverse, they are both focused on building capacity for mountain research in Southern Africa – including the mountain cities of Phuthaditjhaba and Thohoyandou. 

According to him, there are three partners from the United States of America (Appalachian and Colorado State Universities, and the University of Montana) and one partner from the United Kingdom (University of the Highlands and Islands) in the USDPs. Prof Geofrey Mukwada from the Department of Geography and Dr Grey Magaiza from the Department of Sociology are co-ordinating the USDPs.  

The ARU has also attracted one of Southern Africa’s top biodiversity scientists, Prof Peter Taylor, who started at the ARU Department of Zoology and Entomology in January 2021. Dr Clark believes that Prof Taylor – an NRF B3-rated researcher with an H-index of 34 who handed over his SARChI Research Chair to join the ARU – will catapult the ARU to a higher level of regional connectivity (notably with Angola), research outputs, and internal mentoring capacity. Prof Taylor, described as a mammologist and evolutionary biologist, specialises in the systematics, ecology, conservation, and ecosystem services and disservices of small mammals, in particular rodents, bats, and shrews.

Collaboration with two SARChI chairs

The ARU also collaborates with two Department of Science and Innovation NRF centres of excellence (Centre for Biological Control at Rhodes University, and the Centre for Invasion Biology at Stellenbosch University) and one SARChI Chair (Ecosystem Health and Biodiversity in KwaZulu-Natal and the Eastern Cape) on various non-native species in Southern African mountains. 

“The rose (Rosaceae) and grass (Poaceae) plant families are particular problem groups in our mountains. For example, firethorns (Pyracantha species) invade native grassland, taking over valuable grazing land and displacing indigenous species. Nassella grasses similarly displace natural rangeland and render farms unusable – if unchecked, the cost of controlling the nassella can exceed the value of the property. Our research seeks to understand the reproductive ecology of these species better, as well as best practice management,” explains Dr Clark.

In addition, the ARU has an ongoing collaboration on montane pollination systems with the SARChI Chair in Evolutionary Biology at the University of KwaZulu-Natal and the University of Cape Town. Dr Sandy-Lynn Steenhuisen in the Department of Plant Sciences is the ARU champion for both programmes. 

Connecting with policy makers in Lesotho

As of the first quarter in 2020, the ARU was invited to sit on the Maloti-Drakensberg Transfrontier Programme (MDTP): Biodiversity Sub-Committee. This opportunity enables the ARU to connect directly with high-level policy makers in Lesotho and South Africa, and to increase its reach for science-policy connections across the Maloti-Drakensberg region. 

Dr Clark states that partnerships under the MDTP can assist in achieving the ARU’s research goal of ‘the sustainable development of the Maloti-Drakensberg’. According to him, the ARU has proposed a focus in the MDTP on the degradation of the Mont-aux-Sources area. A qualitative site assessment by Dr Clark has, among others, also led to a book chapter being submitted in 2021.

The ARU is also extending its reach to include research on montane wetlands. Together with BirdLife South Africa, they have finalised a memorandum of understanding around montane wetland research, offering the potential for partnering to survey poorly studied montane wetlands for rare biodiversity, notably key endangered bird species. 

Dr Clark says the montane wetland bio-acoustic network has been strengthened through Dr Peter Chatanga (NUL) landing a British Ecological Society grant for bio-acoustic work in Bokong Nature Reserve in Lesotho, in collaboration with Prof Aliza le Roux from the Department of Zoology and Entomology and the Okinawa Institute of Science and Technology in Japan, as well as linking to BirdLife’s programme.

Global Mountain Safeguard Research in Southern Africa

Southern African links grew well in 2020 due to new mountain-focused contacts in Madagascar, Zambia, Malawi, and Réunion through the Global Mountain Safeguard Research (GLOMOS)-led Safeguarding Mountains book project, with Dr Clark being the editor of the African contribution. 

The ARU submitted several research proposals with members of the GLOMOS team, including on water security and civic society in Maloti-a-Phofung Local Municipality; climate change and water provisioning in the Maloti-Drakensberg; and a book (in process) on Phuthaditjhaba as an African mountain city.  

The ARU is also planning the first Southern African Mountain Conference (SAMC2022) in partnership with the AMRF and GLOMOS, which will take place from 14 to 17 March 2022. According to Dr Clark, they seek to draw a strong regional contribution for a better understanding of Southern African mountains as social-ecological systems. “We also aim to form a stronger science-policy-practitioner interface and community of practice for Southern African mountains,” he says. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept