Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 May 2021 | Story Leonie Bolleurs | Photo Leonie Bolleurs
The Maloti-Drakensberg is known as the ’water tower of Southern Africa’, as it is the largest provider of fresh water in the region. If the alpine system collapses, the water production will be detrimentally impacted.

The Afromontane Research Unit (ARU) of the University of the Free State, based in Phuthaditjhaba South Africa, is partnering with several institutions of higher learning, relevant forums, foundations, and policy makers in Africa in an attempt to expand its alpine research.

The research unit is joining forces with the University of Helsinki (Finland) and the National University of Lesotho (NUL) for a National Research Foundation (NRF) award to the University of Pretoria on using fine-scale functional and compositional variation in alpine plants to predict the impact of climate change. According to Dr Ralph Clark, Director of the ARU, this project will expand understanding of the ecology of the alpine zone in the Maloti-Drakensberg, and its similarity (or dissimilarity) with other alpine and tundra environments. 

First step towards sustainability and restoration

A complimentary visit by Alex Hickman, Chair of the African Mountain Research Foundation (AMRF), to the Bvumba Mountains in Zimbabwe, the ARU, and Afriski, laid the psychological foundations for the first two AMRF mountain observatories, as well as gaining support from Afriski as a focus area for alpine studies in the Maloti-Drakensberg. 

Dr Clark explains that the Maloti-Drakensberg is known as the ’water tower of Southern Africa’, as it is the largest provider of fresh water in the region. “The alpine system is critical to this water provisioning function but is under tremendous pressure from intense communal rangeland degradation. If the alpine system collapses, the water production will be detrimentally impacted,” he says.

“Understanding this alpine system holistically is the first step to sustainability and restoration in a social-ecological paradigm,” he adds.

Building capacity for mountain research

The ARU is leading two University Staff Doctorate Programmes (USDPs), both in partnership with the University of Venda, which supports 20 young academics to achieve their doctorates. Dr Clark says while doctoral topics are diverse, they are both focused on building capacity for mountain research in Southern Africa – including the mountain cities of Phuthaditjhaba and Thohoyandou. 

According to him, there are three partners from the United States of America (Appalachian and Colorado State Universities, and the University of Montana) and one partner from the United Kingdom (University of the Highlands and Islands) in the USDPs. Prof Geofrey Mukwada from the Department of Geography and Dr Grey Magaiza from the Department of Sociology are co-ordinating the USDPs.  

The ARU has also attracted one of Southern Africa’s top biodiversity scientists, Prof Peter Taylor, who started at the ARU Department of Zoology and Entomology in January 2021. Dr Clark believes that Prof Taylor – an NRF B3-rated researcher with an H-index of 34 who handed over his SARChI Research Chair to join the ARU – will catapult the ARU to a higher level of regional connectivity (notably with Angola), research outputs, and internal mentoring capacity. Prof Taylor, described as a mammologist and evolutionary biologist, specialises in the systematics, ecology, conservation, and ecosystem services and disservices of small mammals, in particular rodents, bats, and shrews.

Collaboration with two SARChI chairs

The ARU also collaborates with two Department of Science and Innovation NRF centres of excellence (Centre for Biological Control at Rhodes University, and the Centre for Invasion Biology at Stellenbosch University) and one SARChI Chair (Ecosystem Health and Biodiversity in KwaZulu-Natal and the Eastern Cape) on various non-native species in Southern African mountains. 

“The rose (Rosaceae) and grass (Poaceae) plant families are particular problem groups in our mountains. For example, firethorns (Pyracantha species) invade native grassland, taking over valuable grazing land and displacing indigenous species. Nassella grasses similarly displace natural rangeland and render farms unusable – if unchecked, the cost of controlling the nassella can exceed the value of the property. Our research seeks to understand the reproductive ecology of these species better, as well as best practice management,” explains Dr Clark.

In addition, the ARU has an ongoing collaboration on montane pollination systems with the SARChI Chair in Evolutionary Biology at the University of KwaZulu-Natal and the University of Cape Town. Dr Sandy-Lynn Steenhuisen in the Department of Plant Sciences is the ARU champion for both programmes. 

Connecting with policy makers in Lesotho

As of the first quarter in 2020, the ARU was invited to sit on the Maloti-Drakensberg Transfrontier Programme (MDTP): Biodiversity Sub-Committee. This opportunity enables the ARU to connect directly with high-level policy makers in Lesotho and South Africa, and to increase its reach for science-policy connections across the Maloti-Drakensberg region. 

Dr Clark states that partnerships under the MDTP can assist in achieving the ARU’s research goal of ‘the sustainable development of the Maloti-Drakensberg’. According to him, the ARU has proposed a focus in the MDTP on the degradation of the Mont-aux-Sources area. A qualitative site assessment by Dr Clark has, among others, also led to a book chapter being submitted in 2021.

The ARU is also extending its reach to include research on montane wetlands. Together with BirdLife South Africa, they have finalised a memorandum of understanding around montane wetland research, offering the potential for partnering to survey poorly studied montane wetlands for rare biodiversity, notably key endangered bird species. 

Dr Clark says the montane wetland bio-acoustic network has been strengthened through Dr Peter Chatanga (NUL) landing a British Ecological Society grant for bio-acoustic work in Bokong Nature Reserve in Lesotho, in collaboration with Prof Aliza le Roux from the Department of Zoology and Entomology and the Okinawa Institute of Science and Technology in Japan, as well as linking to BirdLife’s programme.

Global Mountain Safeguard Research in Southern Africa

Southern African links grew well in 2020 due to new mountain-focused contacts in Madagascar, Zambia, Malawi, and Réunion through the Global Mountain Safeguard Research (GLOMOS)-led Safeguarding Mountains book project, with Dr Clark being the editor of the African contribution. 

The ARU submitted several research proposals with members of the GLOMOS team, including on water security and civic society in Maloti-a-Phofung Local Municipality; climate change and water provisioning in the Maloti-Drakensberg; and a book (in process) on Phuthaditjhaba as an African mountain city.  

The ARU is also planning the first Southern African Mountain Conference (SAMC2022) in partnership with the AMRF and GLOMOS, which will take place from 14 to 17 March 2022. According to Dr Clark, they seek to draw a strong regional contribution for a better understanding of Southern African mountains as social-ecological systems. “We also aim to form a stronger science-policy-practitioner interface and community of practice for Southern African mountains,” he says. 

News Archive

Africa the birthplace of mathematics, says Prof Atangana
2017-11-17


 Description: Prof Abdon Atangana, African Award of Applied Mathematics  Tags: Prof Abdon Atangana, African Award of Applied Mathematics

Prof Abdon Atangana from the UFS Institute for Groundwater Studies.
Photo: Supplied

 

Prof Abdon Atangana from the Institute for Groundwater Studies at the University of the Free State recently received the African Award of Applied Mathematics during the International conference "African’s Days of Applied Mathematics" that was held in Errachidia, Morocco. Prof Atangana delivered the opening speech with the title "Africa was a temple of knowledge before: What happened?” The focus of the conference was to offer a forum for the promotion of mathematics and its applications in African countries.

When Europeans first came to Africa, they considered the architecture to be disorganised and thus primitive. It never occurred to them that Africans might have been using a form of mathematics that they hadn’t even discovered yet.

Africa is home to the world’s earliest known use of measuring and calculation. Thousands of years ago Africans were using numerals, algebra and geometry in daily life. “Our continent is the birthplace of both basic and advanced mathematics,” said Prof Atangana. 

Africa attracted a series of immigrants who spread knowledge from this continent to the rest of the world.

Measuring and counting
In one of his examples of African mathematics knowledge Prof Atangana referred to the oldest mathematical instrument as the Lebombo bone, a baboon fibula used as a measuring instrument, which was named after the Lebombo Mountains of Swaziland. The world’s oldest evidence of advanced mathematics was also a baboon fibula that was discovered in present-day Democratic Republic of Congo.

Another example he used is the manuscripts in the libraries of the Sankoré University, one of the world’s oldest tertiary institutions. This university in Timbuktu, Mali, is full of manuscripts mainly written in Ajami in the 1200s AD. “When Europeans and Western Asians began visiting and colonising Mali between the 1300s and 1800s, Malians hid the manuscripts in basements, attics and underground, fearing destruction or theft by foreigners. This was certainly a good idea, given the Europeans' history of destroying texts in Kemet and other areas of the continent. Many of the scripts were mathematical and astronomical in nature. In recent years, as many as 700 000 scripts have been rediscovered and attest to the continuous knowledge of advanced mathematics and science in Africa well before European colonisation. 

Fractal geometry

“One of Africa’s major achievements was the advanced knowledge of fractal geometry. This knowledge is found in a wide aspect of Africa life: from art, social design structures, architecture, to games, trade and divination systems. 

“The binary numeral system was also widely known through Africa before it was known throughout much of the world. There is a theory that it could have influenced Western geometry, which led to the development of digital computers,” he said. 

“Can Africa rise again?” Prof Atangana believes it can.

He concluded with a plea to fellow African researchers to do research that will build towards a new Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept