Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 May 2021 | Story Leonie Bolleurs | Photo Leonie Bolleurs
The Maloti-Drakensberg is known as the ’water tower of Southern Africa’, as it is the largest provider of fresh water in the region. If the alpine system collapses, the water production will be detrimentally impacted.

The Afromontane Research Unit (ARU) of the University of the Free State, based in Phuthaditjhaba South Africa, is partnering with several institutions of higher learning, relevant forums, foundations, and policy makers in Africa in an attempt to expand its alpine research.

The research unit is joining forces with the University of Helsinki (Finland) and the National University of Lesotho (NUL) for a National Research Foundation (NRF) award to the University of Pretoria on using fine-scale functional and compositional variation in alpine plants to predict the impact of climate change. According to Dr Ralph Clark, Director of the ARU, this project will expand understanding of the ecology of the alpine zone in the Maloti-Drakensberg, and its similarity (or dissimilarity) with other alpine and tundra environments. 

First step towards sustainability and restoration

A complimentary visit by Alex Hickman, Chair of the African Mountain Research Foundation (AMRF), to the Bvumba Mountains in Zimbabwe, the ARU, and Afriski, laid the psychological foundations for the first two AMRF mountain observatories, as well as gaining support from Afriski as a focus area for alpine studies in the Maloti-Drakensberg. 

Dr Clark explains that the Maloti-Drakensberg is known as the ’water tower of Southern Africa’, as it is the largest provider of fresh water in the region. “The alpine system is critical to this water provisioning function but is under tremendous pressure from intense communal rangeland degradation. If the alpine system collapses, the water production will be detrimentally impacted,” he says.

“Understanding this alpine system holistically is the first step to sustainability and restoration in a social-ecological paradigm,” he adds.

Building capacity for mountain research

The ARU is leading two University Staff Doctorate Programmes (USDPs), both in partnership with the University of Venda, which supports 20 young academics to achieve their doctorates. Dr Clark says while doctoral topics are diverse, they are both focused on building capacity for mountain research in Southern Africa – including the mountain cities of Phuthaditjhaba and Thohoyandou. 

According to him, there are three partners from the United States of America (Appalachian and Colorado State Universities, and the University of Montana) and one partner from the United Kingdom (University of the Highlands and Islands) in the USDPs. Prof Geofrey Mukwada from the Department of Geography and Dr Grey Magaiza from the Department of Sociology are co-ordinating the USDPs.  

The ARU has also attracted one of Southern Africa’s top biodiversity scientists, Prof Peter Taylor, who started at the ARU Department of Zoology and Entomology in January 2021. Dr Clark believes that Prof Taylor – an NRF B3-rated researcher with an H-index of 34 who handed over his SARChI Research Chair to join the ARU – will catapult the ARU to a higher level of regional connectivity (notably with Angola), research outputs, and internal mentoring capacity. Prof Taylor, described as a mammologist and evolutionary biologist, specialises in the systematics, ecology, conservation, and ecosystem services and disservices of small mammals, in particular rodents, bats, and shrews.

Collaboration with two SARChI chairs

The ARU also collaborates with two Department of Science and Innovation NRF centres of excellence (Centre for Biological Control at Rhodes University, and the Centre for Invasion Biology at Stellenbosch University) and one SARChI Chair (Ecosystem Health and Biodiversity in KwaZulu-Natal and the Eastern Cape) on various non-native species in Southern African mountains. 

“The rose (Rosaceae) and grass (Poaceae) plant families are particular problem groups in our mountains. For example, firethorns (Pyracantha species) invade native grassland, taking over valuable grazing land and displacing indigenous species. Nassella grasses similarly displace natural rangeland and render farms unusable – if unchecked, the cost of controlling the nassella can exceed the value of the property. Our research seeks to understand the reproductive ecology of these species better, as well as best practice management,” explains Dr Clark.

In addition, the ARU has an ongoing collaboration on montane pollination systems with the SARChI Chair in Evolutionary Biology at the University of KwaZulu-Natal and the University of Cape Town. Dr Sandy-Lynn Steenhuisen in the Department of Plant Sciences is the ARU champion for both programmes. 

Connecting with policy makers in Lesotho

As of the first quarter in 2020, the ARU was invited to sit on the Maloti-Drakensberg Transfrontier Programme (MDTP): Biodiversity Sub-Committee. This opportunity enables the ARU to connect directly with high-level policy makers in Lesotho and South Africa, and to increase its reach for science-policy connections across the Maloti-Drakensberg region. 

Dr Clark states that partnerships under the MDTP can assist in achieving the ARU’s research goal of ‘the sustainable development of the Maloti-Drakensberg’. According to him, the ARU has proposed a focus in the MDTP on the degradation of the Mont-aux-Sources area. A qualitative site assessment by Dr Clark has, among others, also led to a book chapter being submitted in 2021.

The ARU is also extending its reach to include research on montane wetlands. Together with BirdLife South Africa, they have finalised a memorandum of understanding around montane wetland research, offering the potential for partnering to survey poorly studied montane wetlands for rare biodiversity, notably key endangered bird species. 

Dr Clark says the montane wetland bio-acoustic network has been strengthened through Dr Peter Chatanga (NUL) landing a British Ecological Society grant for bio-acoustic work in Bokong Nature Reserve in Lesotho, in collaboration with Prof Aliza le Roux from the Department of Zoology and Entomology and the Okinawa Institute of Science and Technology in Japan, as well as linking to BirdLife’s programme.

Global Mountain Safeguard Research in Southern Africa

Southern African links grew well in 2020 due to new mountain-focused contacts in Madagascar, Zambia, Malawi, and Réunion through the Global Mountain Safeguard Research (GLOMOS)-led Safeguarding Mountains book project, with Dr Clark being the editor of the African contribution. 

The ARU submitted several research proposals with members of the GLOMOS team, including on water security and civic society in Maloti-a-Phofung Local Municipality; climate change and water provisioning in the Maloti-Drakensberg; and a book (in process) on Phuthaditjhaba as an African mountain city.  

The ARU is also planning the first Southern African Mountain Conference (SAMC2022) in partnership with the AMRF and GLOMOS, which will take place from 14 to 17 March 2022. According to Dr Clark, they seek to draw a strong regional contribution for a better understanding of Southern African mountains as social-ecological systems. “We also aim to form a stronger science-policy-practitioner interface and community of practice for Southern African mountains,” he says. 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept