Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 May 2021 | Story Leonie Bolleurs | Photo Leonie Bolleurs
The Maloti-Drakensberg is known as the ’water tower of Southern Africa’, as it is the largest provider of fresh water in the region. If the alpine system collapses, the water production will be detrimentally impacted.

The Afromontane Research Unit (ARU) of the University of the Free State, based in Phuthaditjhaba South Africa, is partnering with several institutions of higher learning, relevant forums, foundations, and policy makers in Africa in an attempt to expand its alpine research.

The research unit is joining forces with the University of Helsinki (Finland) and the National University of Lesotho (NUL) for a National Research Foundation (NRF) award to the University of Pretoria on using fine-scale functional and compositional variation in alpine plants to predict the impact of climate change. According to Dr Ralph Clark, Director of the ARU, this project will expand understanding of the ecology of the alpine zone in the Maloti-Drakensberg, and its similarity (or dissimilarity) with other alpine and tundra environments. 

First step towards sustainability and restoration

A complimentary visit by Alex Hickman, Chair of the African Mountain Research Foundation (AMRF), to the Bvumba Mountains in Zimbabwe, the ARU, and Afriski, laid the psychological foundations for the first two AMRF mountain observatories, as well as gaining support from Afriski as a focus area for alpine studies in the Maloti-Drakensberg. 

Dr Clark explains that the Maloti-Drakensberg is known as the ’water tower of Southern Africa’, as it is the largest provider of fresh water in the region. “The alpine system is critical to this water provisioning function but is under tremendous pressure from intense communal rangeland degradation. If the alpine system collapses, the water production will be detrimentally impacted,” he says.

“Understanding this alpine system holistically is the first step to sustainability and restoration in a social-ecological paradigm,” he adds.

Building capacity for mountain research

The ARU is leading two University Staff Doctorate Programmes (USDPs), both in partnership with the University of Venda, which supports 20 young academics to achieve their doctorates. Dr Clark says while doctoral topics are diverse, they are both focused on building capacity for mountain research in Southern Africa – including the mountain cities of Phuthaditjhaba and Thohoyandou. 

According to him, there are three partners from the United States of America (Appalachian and Colorado State Universities, and the University of Montana) and one partner from the United Kingdom (University of the Highlands and Islands) in the USDPs. Prof Geofrey Mukwada from the Department of Geography and Dr Grey Magaiza from the Department of Sociology are co-ordinating the USDPs.  

The ARU has also attracted one of Southern Africa’s top biodiversity scientists, Prof Peter Taylor, who started at the ARU Department of Zoology and Entomology in January 2021. Dr Clark believes that Prof Taylor – an NRF B3-rated researcher with an H-index of 34 who handed over his SARChI Research Chair to join the ARU – will catapult the ARU to a higher level of regional connectivity (notably with Angola), research outputs, and internal mentoring capacity. Prof Taylor, described as a mammologist and evolutionary biologist, specialises in the systematics, ecology, conservation, and ecosystem services and disservices of small mammals, in particular rodents, bats, and shrews.

Collaboration with two SARChI chairs

The ARU also collaborates with two Department of Science and Innovation NRF centres of excellence (Centre for Biological Control at Rhodes University, and the Centre for Invasion Biology at Stellenbosch University) and one SARChI Chair (Ecosystem Health and Biodiversity in KwaZulu-Natal and the Eastern Cape) on various non-native species in Southern African mountains. 

“The rose (Rosaceae) and grass (Poaceae) plant families are particular problem groups in our mountains. For example, firethorns (Pyracantha species) invade native grassland, taking over valuable grazing land and displacing indigenous species. Nassella grasses similarly displace natural rangeland and render farms unusable – if unchecked, the cost of controlling the nassella can exceed the value of the property. Our research seeks to understand the reproductive ecology of these species better, as well as best practice management,” explains Dr Clark.

In addition, the ARU has an ongoing collaboration on montane pollination systems with the SARChI Chair in Evolutionary Biology at the University of KwaZulu-Natal and the University of Cape Town. Dr Sandy-Lynn Steenhuisen in the Department of Plant Sciences is the ARU champion for both programmes. 

Connecting with policy makers in Lesotho

As of the first quarter in 2020, the ARU was invited to sit on the Maloti-Drakensberg Transfrontier Programme (MDTP): Biodiversity Sub-Committee. This opportunity enables the ARU to connect directly with high-level policy makers in Lesotho and South Africa, and to increase its reach for science-policy connections across the Maloti-Drakensberg region. 

Dr Clark states that partnerships under the MDTP can assist in achieving the ARU’s research goal of ‘the sustainable development of the Maloti-Drakensberg’. According to him, the ARU has proposed a focus in the MDTP on the degradation of the Mont-aux-Sources area. A qualitative site assessment by Dr Clark has, among others, also led to a book chapter being submitted in 2021.

The ARU is also extending its reach to include research on montane wetlands. Together with BirdLife South Africa, they have finalised a memorandum of understanding around montane wetland research, offering the potential for partnering to survey poorly studied montane wetlands for rare biodiversity, notably key endangered bird species. 

Dr Clark says the montane wetland bio-acoustic network has been strengthened through Dr Peter Chatanga (NUL) landing a British Ecological Society grant for bio-acoustic work in Bokong Nature Reserve in Lesotho, in collaboration with Prof Aliza le Roux from the Department of Zoology and Entomology and the Okinawa Institute of Science and Technology in Japan, as well as linking to BirdLife’s programme.

Global Mountain Safeguard Research in Southern Africa

Southern African links grew well in 2020 due to new mountain-focused contacts in Madagascar, Zambia, Malawi, and Réunion through the Global Mountain Safeguard Research (GLOMOS)-led Safeguarding Mountains book project, with Dr Clark being the editor of the African contribution. 

The ARU submitted several research proposals with members of the GLOMOS team, including on water security and civic society in Maloti-a-Phofung Local Municipality; climate change and water provisioning in the Maloti-Drakensberg; and a book (in process) on Phuthaditjhaba as an African mountain city.  

The ARU is also planning the first Southern African Mountain Conference (SAMC2022) in partnership with the AMRF and GLOMOS, which will take place from 14 to 17 March 2022. According to Dr Clark, they seek to draw a strong regional contribution for a better understanding of Southern African mountains as social-ecological systems. “We also aim to form a stronger science-policy-practitioner interface and community of practice for Southern African mountains,” he says. 

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept