Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 November 2021 | Story Dr Nitha Ramnath | Photo Supplied


“Running provides me with a platform to reach others, to bring hope, to make people realise that anything is possible if you are prepared to work hard for it,” says Louzanne Coetzee, our very own home-grown all-round achiever, who is fun-loving, relatable, and inspiring. A South African para-athlete, Coetzee was born blind as a result of a hereditary condition called Leber congenital amaurosis, and competes in the T11 disability class for athletes with the highest level of visual impairment. Coetzee enjoys an integrated life, with an interest in baking, watching movies, walking and hiking, cycling, being part of a church band, public speaking, coupled with some artistic hobbies.

Our podcast guest

Coetzee competed at the 2020 Tokyo Paralympic Games this year, where she won a silver medal in the 1 500 m final alongside her guide Erasmus Badenshorst, setting a new African record of 4:40.96. She also competed in the women’s mixed class marathon (T11 and T12 for the visually impaired) with her guide Claus Kempen, improving the world record by 1 min 42 sec and her personal best from 3:13:41 to 3:11:13. 

In 2018, Coetzee competed in three events at the Para Athletics event in Berlin, Germany – the 800 m, 1 500 m, and 5 000 m. She set a new African record in the T11 800 m race, taking the silver medal, as well as a bronze for the 1 500 m race. In 2018, Coetzee also broke the 5 000 m (women) world record in her disability class, while in the same year she became the first visually impaired athlete to compete at the World University Cross Country Championships in Switzerland. 
Coetzee set a new world record in the 5 000 m T11 category for the first time at the Nedbank National Championships for the Physically Disabled in March 2016. Moreover, with her performance of 19:17.06, Coetzee shattered the Lithuanian athlete Sigita Markeviciene’s 16-year record of 20:05.81, set at the 2000 Paralympics in Sydney. Coetzee became the first totally blind female to clock sub-20 minutes in the 5 000 m.

Her involvement in her society stretches beyond sports, and as a student, she formed part of the University of the Free State Student Representative Council. She was also an athlete representative on the Free State Academy of Sport’s executive committee.

In 2014, she became the first visually impaired student to be elected to the UFS Student Representative Council (SRC), with the portfolio Student Accessibility. From 2015 to 2017, she was a research assistant in the Institute for Reconciliation and Social Justice at the UFS, and in 2016 she also acted as junior lecturer in a computer module for students with visual impairments. From 2017 to 2018, she was Residence Head of Arista Ladies City Residence, and she is currently the Residence Head of Akasia Residence at the UFS.  

Coetzee boasts several accolades from the UFS. She was named the 2014 Senior Sportswoman of the Year by the Free State Sport Association for the Physically Disabled (FSSAPD). In 2017, she and her guide Khothatso Mokone received a Special Award for Disabled Sport at the KovsieSport Awards. In 2018, she won the Free State Sports Star Award, and was named Sports Star of the Year (period June 2018 to April 2019) by the Free State Sport Association for the Physically Disabled. 

Coetzee’s academic qualifications include a BA and BAHons in Integrated and Corporative Marketing Communication, and an MA in Social Cohesion and Reconciliation – all from the University of the Free State. 
Listen to the podcast  below

François van Schalkwyk and Keenan Carelse, UFS alumni leading the university’s United Kingdom Alumni Chapter, have put their voices together to produce and direct the podcast series.  Intended to reconnect alumni with the university and their university experience, the podcasts will be featured on the first Monday of every month, ending in November 2021.  Our featured alumni share and reflect on their experiences at the UFS, how it has shaped their lives, and relate why their ongoing association with the UFS is still relevant and important. The podcasts are authentic conversations – they provide an opportunity for the university to understand and learn about the experiences of its alumni and to celebrate the diversity and touchpoints that unite them. 

For further information regarding the podcast series, or to propose other alumni guests, please email us at alumnipodcast@ufs.ac.za 

For all Voices from the Free State podcasts, click here 
    

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept