Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2022 | Story Anthony Mthembu | Photo Supplied
Day-residence representatives hard at work during the outreach programme aimed at attracting off-campus students to join any of the several day residences.

The impact of COVID-19 on students who started their studies at the UFS in 2020 and 2021, is the fact that they had to experience the UFS student life virtually. As such, the ability to experience day-residence culture was minimal.
Consequently, the SRC: Day Residences, Nontando Kalipa, along with representatives from the seven day residences and the SRC, visited off-campus accommodation as a means to market day residences. The initiative ran from 1 to 4 August 2022. “We went to various communes and other student accommodation such as Quattro, CampusKey, and ResPublica, and explained our mandate as SRC: Day Residences to the off-campus students,” Kalipa expressed.

The Importance of the Initiative

According to Kalipa, there is a lack of knowledge about the role and relevance of day residences in student life; this was seen in the responses received from some of the off-campus students who were approached during the outreach. “We came across some students who had never heard of day residences, and others who knew of them but didn’t really understand their function,” stated Kalipa. Therefore, she insisted that representatives from the respective day residences should also be involved in the initiative. “The RC primes were there specifically to share their experiences about day residences with off-campus students,” said Kalipa.

The Relevance of Day Residences in Student Life

“Day residences offer a holistic student experience, so off-campus students can expect any of the seven day residences to assist them in becoming well-rounded individuals,” expressed Corbin Butler, the incoming SRC for Day Residences. These spaces offer off-campus students access to cultural and sporting activities, such as Stagedoor, SingOff, and basketball tournaments, among others. On-campus students have the advantage of being exposed to other students from all walks of life and interacting with them consistently. As such, Butler maintains that day residences aim to bridge the existing gap by creating that very same experience for off-campus students. “We don’t want you to just get a degree and leave, we also want to capacitate you with life skills, and that’s the benefit of being part of a day residence,” Butler stated.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept