Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2022 | Story Leonie Bolleurs | Photo Francois van Vuuren, iFlair Photography
UFS Sasol Solar car
Team UFS, which has entered its solar-powered vehicle, Lengau (meaning Cheetah in Sesotho), will compete against more than 11 other teams, both local and international. Pictured here is the entire team during one of the road tests at Brandkop in Bloemfontein.

It is almost three years after Team UFS first decided to put a solar-powered vehicle on the road. Within a few days, this dream of participating in the international Sasol Solar Challenge will become a reality when they depart from Carnival City in Johannesburg on 9 September 2022.

For the challenge, the team of ten members will stop at six points between the departure point and the V&A Waterfront in Cape Town, where they will arrive on 16 September 2022.

Completing the estimated distance of 2 500 km

“The team that finishes with the greatest distance covered within the allotted time, will win the challenge,” says Dr Hendrik van Heerden from the UFS Department of Physics and project manager of Team UFS. 

The UFS, which has entered its solar-powered vehicle, Lengau (meaning Cheetah in Sesotho), will compete against more than 11 other teams, both local and international.

Dr Van Heerden’s two main objectives in entering the challenge, are to build a solar-powered vehicle robust enough to complete the estimated distance of 2 500 km during the 2022 Sasol Solar Challenge. Furthermore, he aims to establish capacity in the students and staff through acquired practical knowledge on the management, design, construction, and actual racing of solar-powered vehicles, which is to form the basis for participation in future projects and event competitions. 

Bringing together expertise from the UFS Departments of Physics, Engineering Sciences, Computer Sciences and Informatics, Electronics and Instrumentation, and Geography, the team of 23 started with the construction of their vehicle on 18 October 2021. 

Just over 10 months later and the car is fully functional, already passed a few road tests, and the crew is ready for the big challenge ahead.

The three drivers, Albert Dreyer, Monica van der Walt, Denver de Koker, together with back-up driver Lukas Erasmus, will travel on public roads via a predefined route over eight days, driving every day between 07:30 and 17:00. The aluminium-frame vehicle will weigh up to 370 kg, including the frame, the five solar panels, and the driver, and can reach a maximum speed of 60 km per hour (they aim to average 45 km/hour). 

According to the Sasol Solar Challenge rules and regulations, no driver is allowed to drive for longer than two hours. The capacity of the batteries and the availability of sun will determine how often the drivers will need to stop to recharge the solar batteries. 

Popularising electric vehicle technologies

This is the first time that Team UFS will be participating in the Sasol Solar Challenge. A guardedly optimistic Dr Van Heerden says their goal is to complete the full distance without breakages, and to accumulate as much knowledge and information as possible. With the next Sasol Solar Challenge in two years’ time, they plan to enter again. 

“Our long-term aim is to continually improve on the design, technology, science, and project implementation to participate in events and challenges around ‘green’ energy and relevant technologies. An additional aim is the popularisation of electric vehicle (EV) technologies through outreach programmes,” says Dr Van Heerden. 

Prof Koos Terblans, Head of the Department of Physics, says one of the key benefits of this project was that the group, consisting of personnel and students from different departments, learned to work together as one team. “Together, they worked and made plans to collect and apply the maximum amount of energy. Looking at the bigger picture, they are solving a worldwide problem, that of harvesting and applying energy. I am very excited that they have come this far; this is a first for the university.”

News Archive

Prof Tredoux turns theories regarding the formation of metals on its head
2013-09-17

 

Prof Marian Tredoux
17 September 2013

The latest research conducted by Prof Marian Tredoux of the Department of Geology, in collaboration with her research assistant Bianca Kennedy and their colleagues in Germany, placed established theories regarding how minerals of the platinum-group of elements are formed, under close scrutiny.

The article on this research of which Prof Tredoux is a co-author – ‘Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts’ – was published in Nature Communications on 6 September 2013. It is an online journal for research of the highest quality in the fields of biological, physical and chemical sciences.

This study found that atoms of platinum and arsenic create nanoclusters, long before the mineral sperrylite can crystallise. Thus, the platinum does not occur as a primary sulphur compound. The research was conducted at the Steinmann Institute of the University of Bonn, Germany, as well as here in Bloemfontein.

Monetary support from Inkaba yeAfrica – a German-South African multidisciplinary and intercultural Earth Science collaborative of the National Research Foundation (NRF) – made this research possible. Studies are now also being conducted on other metals in the precious metal group, specifically palladium, rhodium and ruthenium.

The discovery of the nanoclusters and the combination with arsenic can have far-reaching consequences for the platinum mine industry, if it can be utilised to recover a greater amount of platinum ore and therefore less wastage ending up in mine dumps. This will signify optimal mining of a scarce and valuable metal, one of South Africa’s most important export products.

For Prof Tredoux, the research results also prove thoughts she already had some twenty years ago around the forming of platinum minerals. “Researchers laughed in my face, but the evidence had to wait for the development of technology to prove it.” Young researchers were very excited at recent congresses about the findings, since the new models can bring new insights.

“Chemistry researchers have been talking about platinum element clusters in watery environments for quite a while, but it was thought that these would not appear in magmas (molten rock) due to the high temperatures (>1 000 degrees celsius).”

Prof Tredoux has already delivered lectures at congresses in Scotland, Hungary, Sweden and Italy on this research.

Read the article at: http://www.nature.com/ncomms/2013/130906/ncomms3405/full/ncomms3405.html

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept