Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2022 | Story Leonie Bolleurs | Photo Francois van Vuuren, iFlair Photography
UFS Sasol Solar car
Team UFS, which has entered its solar-powered vehicle, Lengau (meaning Cheetah in Sesotho), will compete against more than 11 other teams, both local and international. Pictured here is the entire team during one of the road tests at Brandkop in Bloemfontein.

It is almost three years after Team UFS first decided to put a solar-powered vehicle on the road. Within a few days, this dream of participating in the international Sasol Solar Challenge will become a reality when they depart from Carnival City in Johannesburg on 9 September 2022.

For the challenge, the team of ten members will stop at six points between the departure point and the V&A Waterfront in Cape Town, where they will arrive on 16 September 2022.

Completing the estimated distance of 2 500 km

“The team that finishes with the greatest distance covered within the allotted time, will win the challenge,” says Dr Hendrik van Heerden from the UFS Department of Physics and project manager of Team UFS. 

The UFS, which has entered its solar-powered vehicle, Lengau (meaning Cheetah in Sesotho), will compete against more than 11 other teams, both local and international.

Dr Van Heerden’s two main objectives in entering the challenge, are to build a solar-powered vehicle robust enough to complete the estimated distance of 2 500 km during the 2022 Sasol Solar Challenge. Furthermore, he aims to establish capacity in the students and staff through acquired practical knowledge on the management, design, construction, and actual racing of solar-powered vehicles, which is to form the basis for participation in future projects and event competitions. 

Bringing together expertise from the UFS Departments of Physics, Engineering Sciences, Computer Sciences and Informatics, Electronics and Instrumentation, and Geography, the team of 23 started with the construction of their vehicle on 18 October 2021. 

Just over 10 months later and the car is fully functional, already passed a few road tests, and the crew is ready for the big challenge ahead.

The three drivers, Albert Dreyer, Monica van der Walt, Denver de Koker, together with back-up driver Lukas Erasmus, will travel on public roads via a predefined route over eight days, driving every day between 07:30 and 17:00. The aluminium-frame vehicle will weigh up to 370 kg, including the frame, the five solar panels, and the driver, and can reach a maximum speed of 60 km per hour (they aim to average 45 km/hour). 

According to the Sasol Solar Challenge rules and regulations, no driver is allowed to drive for longer than two hours. The capacity of the batteries and the availability of sun will determine how often the drivers will need to stop to recharge the solar batteries. 

Popularising electric vehicle technologies

This is the first time that Team UFS will be participating in the Sasol Solar Challenge. A guardedly optimistic Dr Van Heerden says their goal is to complete the full distance without breakages, and to accumulate as much knowledge and information as possible. With the next Sasol Solar Challenge in two years’ time, they plan to enter again. 

“Our long-term aim is to continually improve on the design, technology, science, and project implementation to participate in events and challenges around ‘green’ energy and relevant technologies. An additional aim is the popularisation of electric vehicle (EV) technologies through outreach programmes,” says Dr Van Heerden. 

Prof Koos Terblans, Head of the Department of Physics, says one of the key benefits of this project was that the group, consisting of personnel and students from different departments, learned to work together as one team. “Together, they worked and made plans to collect and apply the maximum amount of energy. Looking at the bigger picture, they are solving a worldwide problem, that of harvesting and applying energy. I am very excited that they have come this far; this is a first for the university.”

News Archive

Plant eco-physiologist finds effective solutions for crop optimisation
2016-07-24

Description: Orange trees Tags: Orange trees

The bio-stimulant was tested on
this citrus. This is the first time
that the product has been tested
on a crop.

In a time characterised by society facing increasing population growth, food crises, and extreme climatic conditions such as drought, it is essential for farmers to integrate science with their work practices in order to optimise crops.

Role of photosynthesis and plant sap data

By knowing how to use photosynthesis and plant sap data for determining plant health, fast and effective solutions could be established for the optimisation of crops. This technique, which could help farmers utilise every bit of usable land effectively, is the focus of Marguerite Westcott’s PhD study. She is a junior lecturer and plant eco-physiologist in die Department of Plant Sciences at the University of the Free State.

Westcott uses this technique in her studies to prove that a newly-developed bio-stimulant stimulates plants in order to metabolise water and other nutrients better, yielding increased crops as a result.

Agricultural and mining sectors benefit from research

The greatest part of these projects focuses on the agricultural sector. Westcott and a colleague, Dr Gert Marais, are researching the physiology of pecan and citrus trees in order to optimise the growth of these crops, thus minimising disease through biological methods. Field trials are being conducted in actively-producing orchards in the Hartswater and Patensie areas in conjunction with the South African Pecan Nut Producers Association (SAPPA) amongst others.
 
The principles that Westcott applies in her research are also used in combination with the bio-stimulant in other studies on disturbed soil, such as mine-dump material, for establishing plants in areas where they would not grow normally. This is an economical way for both the agricultural and mining sectors to improve nutrient absorption, stimulate growth, and contribute to the sustainable utilisation of the soil.

Description: Pecan nut orchards  Tags: Pecan nut orchards

The bio-stimulant contributes to the immunity of the plants.
It was tested in these pecan nut orchards (Hartswater).

Soil rehabilitation key aspect in research projects

“One of two things is happening in my research projects. Either the soil is rehabilitated to bring about the optimal growth of a plant, or the plants are used to rehabilitate the soil,” says Westcott.

Data surveys for her PhD studies began in 2015. “This will be a long-term project in which seasonal data will be collected continuously. The first set of complete field data, together with pot trial data, will be completed after the current crop harvest,” says Westcott.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept