Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2022 | Story Leonie Bolleurs | Photo Francois van Vuuren, iFlair Photography
UFS Sasol Solar car
Team UFS, which has entered its solar-powered vehicle, Lengau (meaning Cheetah in Sesotho), will compete against more than 11 other teams, both local and international. Pictured here is the entire team during one of the road tests at Brandkop in Bloemfontein.

It is almost three years after Team UFS first decided to put a solar-powered vehicle on the road. Within a few days, this dream of participating in the international Sasol Solar Challenge will become a reality when they depart from Carnival City in Johannesburg on 9 September 2022.

For the challenge, the team of ten members will stop at six points between the departure point and the V&A Waterfront in Cape Town, where they will arrive on 16 September 2022.

Completing the estimated distance of 2 500 km

“The team that finishes with the greatest distance covered within the allotted time, will win the challenge,” says Dr Hendrik van Heerden from the UFS Department of Physics and project manager of Team UFS. 

The UFS, which has entered its solar-powered vehicle, Lengau (meaning Cheetah in Sesotho), will compete against more than 11 other teams, both local and international.

Dr Van Heerden’s two main objectives in entering the challenge, are to build a solar-powered vehicle robust enough to complete the estimated distance of 2 500 km during the 2022 Sasol Solar Challenge. Furthermore, he aims to establish capacity in the students and staff through acquired practical knowledge on the management, design, construction, and actual racing of solar-powered vehicles, which is to form the basis for participation in future projects and event competitions. 

Bringing together expertise from the UFS Departments of Physics, Engineering Sciences, Computer Sciences and Informatics, Electronics and Instrumentation, and Geography, the team of 23 started with the construction of their vehicle on 18 October 2021. 

Just over 10 months later and the car is fully functional, already passed a few road tests, and the crew is ready for the big challenge ahead.

The three drivers, Albert Dreyer, Monica van der Walt, Denver de Koker, together with back-up driver Lukas Erasmus, will travel on public roads via a predefined route over eight days, driving every day between 07:30 and 17:00. The aluminium-frame vehicle will weigh up to 370 kg, including the frame, the five solar panels, and the driver, and can reach a maximum speed of 60 km per hour (they aim to average 45 km/hour). 

According to the Sasol Solar Challenge rules and regulations, no driver is allowed to drive for longer than two hours. The capacity of the batteries and the availability of sun will determine how often the drivers will need to stop to recharge the solar batteries. 

Popularising electric vehicle technologies

This is the first time that Team UFS will be participating in the Sasol Solar Challenge. A guardedly optimistic Dr Van Heerden says their goal is to complete the full distance without breakages, and to accumulate as much knowledge and information as possible. With the next Sasol Solar Challenge in two years’ time, they plan to enter again. 

“Our long-term aim is to continually improve on the design, technology, science, and project implementation to participate in events and challenges around ‘green’ energy and relevant technologies. An additional aim is the popularisation of electric vehicle (EV) technologies through outreach programmes,” says Dr Van Heerden. 

Prof Koos Terblans, Head of the Department of Physics, says one of the key benefits of this project was that the group, consisting of personnel and students from different departments, learned to work together as one team. “Together, they worked and made plans to collect and apply the maximum amount of energy. Looking at the bigger picture, they are solving a worldwide problem, that of harvesting and applying energy. I am very excited that they have come this far; this is a first for the university.”

News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept