Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2022 | Story Leonie Bolleurs | Photo Francois van Vuuren, iFlair Photography
UFS Sasol Solar car
Team UFS, which has entered its solar-powered vehicle, Lengau (meaning Cheetah in Sesotho), will compete against more than 11 other teams, both local and international. Pictured here is the entire team during one of the road tests at Brandkop in Bloemfontein.

It is almost three years after Team UFS first decided to put a solar-powered vehicle on the road. Within a few days, this dream of participating in the international Sasol Solar Challenge will become a reality when they depart from Carnival City in Johannesburg on 9 September 2022.

For the challenge, the team of ten members will stop at six points between the departure point and the V&A Waterfront in Cape Town, where they will arrive on 16 September 2022.

Completing the estimated distance of 2 500 km

“The team that finishes with the greatest distance covered within the allotted time, will win the challenge,” says Dr Hendrik van Heerden from the UFS Department of Physics and project manager of Team UFS. 

The UFS, which has entered its solar-powered vehicle, Lengau (meaning Cheetah in Sesotho), will compete against more than 11 other teams, both local and international.

Dr Van Heerden’s two main objectives in entering the challenge, are to build a solar-powered vehicle robust enough to complete the estimated distance of 2 500 km during the 2022 Sasol Solar Challenge. Furthermore, he aims to establish capacity in the students and staff through acquired practical knowledge on the management, design, construction, and actual racing of solar-powered vehicles, which is to form the basis for participation in future projects and event competitions. 

Bringing together expertise from the UFS Departments of Physics, Engineering Sciences, Computer Sciences and Informatics, Electronics and Instrumentation, and Geography, the team of 23 started with the construction of their vehicle on 18 October 2021. 

Just over 10 months later and the car is fully functional, already passed a few road tests, and the crew is ready for the big challenge ahead.

The three drivers, Albert Dreyer, Monica van der Walt, Denver de Koker, together with back-up driver Lukas Erasmus, will travel on public roads via a predefined route over eight days, driving every day between 07:30 and 17:00. The aluminium-frame vehicle will weigh up to 370 kg, including the frame, the five solar panels, and the driver, and can reach a maximum speed of 60 km per hour (they aim to average 45 km/hour). 

According to the Sasol Solar Challenge rules and regulations, no driver is allowed to drive for longer than two hours. The capacity of the batteries and the availability of sun will determine how often the drivers will need to stop to recharge the solar batteries. 

Popularising electric vehicle technologies

This is the first time that Team UFS will be participating in the Sasol Solar Challenge. A guardedly optimistic Dr Van Heerden says their goal is to complete the full distance without breakages, and to accumulate as much knowledge and information as possible. With the next Sasol Solar Challenge in two years’ time, they plan to enter again. 

“Our long-term aim is to continually improve on the design, technology, science, and project implementation to participate in events and challenges around ‘green’ energy and relevant technologies. An additional aim is the popularisation of electric vehicle (EV) technologies through outreach programmes,” says Dr Van Heerden. 

Prof Koos Terblans, Head of the Department of Physics, says one of the key benefits of this project was that the group, consisting of personnel and students from different departments, learned to work together as one team. “Together, they worked and made plans to collect and apply the maximum amount of energy. Looking at the bigger picture, they are solving a worldwide problem, that of harvesting and applying energy. I am very excited that they have come this far; this is a first for the university.”

News Archive

Researcher uses NRF funding for studies to conserve plant and animal life
2017-04-18

Description: Butterfly Tags: Butterfly

It is difficult to survey all different types of
plants and animals and is therefore necessary to
choose one representative group. Butterflies are
relatively cheap and easy to sample. They are
known to be linked to specific habitats and to
respond to human pressures, such as farming.
Photo: Dr Falko Buschke


Earth is the only planet we know of that contains life. The variety of different plants and animals is remarkable: from the giant whales that swim our oceans, to the tiny mosses that grow on the shaded sides of rocks.  Many of these plants and animals are important to humans. For example, trees provide us with oxygen to breathe, bees pollinate our crops and owls control pests. More importantly though, we can tell a lot about society from the way it cares for nature. Humans are the custodians of the planet and the way we care for nature reflects the way we value life.

Dr Falko Buschke, Lecturer at the Centre for Environmental Management at the University of the Free State, is interested in understanding how the distribution of biodiversity [the variety of living things in nature] in time and space influences the way we should conserve and manage nature.

Earth is losing biodiversity faster than at any time in human history

The planet is losing biodiversity faster than at any time in human history. “There is an urgency to conserve plants and animals before they are lost forever. Nature is complex, so the way we study it should embrace this complexity. We should not rely on limited data on one type of species from one place and assume that it will also apply elsewhere. Instead, it is important that biodiversity research is comprehensive in the types of plants and animals while also considering that ecological and evolutionary processes vary through time and across geographic space,” he said.

To conduct his research, Dr Buschke uses a variety of research tools, including biological data surveyed directly from nature, spatial data from satellite remote sensing and geographic information systems databases, and data generated though custom-built computer simulations.

"There is an urgency to conserve
plants and animals before they
are lost forever."

Field work in the eastern Free State
Although parts of the eastern Free State are considered a global priority for biodiversity conservation, it is mainly privately owned commercial farmland. This means that it is important that plants and animals can survive despite living side by side with agricultural production.

“My project investigates whether the sandstone outcrops, known as inselbergs (island-mountains), are safe havens for plants and animals. Because it is difficult to survey all the different types of plants and animals, it is necessary to choose one representative group. That is where butterflies come in. Butterflies are relatively cheap and easy to sample. They are known to be linked to specific habitats and to respond to human pressures, such as farming,” he said. “Once this butterfly data is collected, it can be linked to satellite information on plant growth patterns. This will provide a clearer picture of whether plants and animals can persist side-by-side with commercial agriculture”.

Dr Buschke has just begun surveys that will carry on until the end of this year. “This 12-month project is funded under the Foundational Biodiversity Information Programme through the South African National Biodiversity Institute (SANBI) and the National Research Foundation (NRF).

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept