Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 December 2022 | Story Jóhann Thormählen | Photo Anja Aucamp
Peter Makgato
Peter Makgato showed true perseverance in coming back after being out of action for more than a year with an Achilles tendon injury. The Kovsie long jumper won a bronze medal at the South African Championships in 2022.

If it wasn’t for Peter Makgato’s UFS support system, he would have been lost to South African athletics. The road of recovery after a serious injury can be lonesome, but he was never alone.

The promising long jumper had to learn to walk again after the injury to his Achilles tendon and could only compete more than a year after his dreams were shattered in November 2020.

Only months after returning to jumping in 2022, he was winning medals again.

Keeping me focused

“Without KovsieSport, I believe I would have hung up my spikes after that injury,” says Makgato. “Throughout the entire journey back, I had support from my coach (Emmarie Prinsloo; Head of KovsieSport Jumping Academy) and Oom DB (Prinsloo; Head of Athletics at KovsieSport).”

He also praises “the expert medical help” from Kovsie Health and says he went through nothing alone. “My progress was monitored by a team that knew me before the injury and this meant they were able to keep me focused on the progress and not on the injury.”

Although he had injuries before, Makgato says the emotional challenges were much bigger. “What really helped me were a few words from Wayde van Niekerk days after my operation when I went back to the track on crutches. He told me not to lose my head.

“That is the best advice you can give someone in my position. Physically I was broken, I had to make sure that mentally I fought to stay above the waters.”

Bigger goals in mind

He was only able to walk again from May 2021, started rehab in August 2021, and was running properly by December 2021.

He was only able to jump competitively again in March 2022, and a month later claimed a bronze medal at the South African Championships (7,47 m). This was followed by a USSA bronze in May 2022 (7,46 m).

“I had bigger goals in mind. Now that I look back, I realise that for a person who could not even run properly five months before and who had little preparation time, I was doing pretty good.”

And now the Master of Laws student has his sights on bigger things again: The World Athletics Championships next year and the Olympic Games in 2024.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept