Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 December 2022 | Story André Damons | Photo Sonia Small
Dr Nicholas Pearce
Prof Nicholas Pearce has joined the Faculty of Health Sciences’ management team after being appointed Head of the School of Clinical Medicine. Prof Pearce is the former Head of the Department of Surgery at the UFS and led the Universitas Hospital’s COVID-19 Task Team.

During the height of the COVID-19 pandemic, Prof Nicholas Pearce led the COVID-19 Task Team of the Universitas Academic Hospital, ensuring that the hospital not only had enough Personal protective equipment (PPEs) and beds for patients, but also that the vaccination process ran smoothly. Now, the Best Doctor of the Year for 2022 – as named during this year’s National Annual Batho Pele Excellence Awards (NBPEA) – will lead the School of Clinical Medicine in the Faculty of Health Sciences at the University of the Free State (UFS).

Prof Pearce, former Head of the Department of Surgery at the UFS who served the faculty in multiple capacities over a long period, took up this position on 1 December 2022 – a position he is looking forward to.  

Create world-class doctors, maximise students’ full potential

“I’m excited about taking up my new position as Head of the School of Clinical Medicine. This is a role that comes with huge responsibility, and my vision is to create world-class doctors and to maximise each student’s full potential.  We, as university, are a national asset and need to grow and develop to be of service to the future of our country.  So, to lead a school with such a prestigious history is truly a privilege,” says Prof Pearce. 

According to him, the goal for the Medical School in the next five years should be determined by three main core drivers: service delivery, research, and teaching and training. He would like to be in a stronger position, with innovation that can produce world-class doctors (both undergraduate and postgraduate). 

If you look at the strategic plan of the UFS, says Prof Pearce, it is clear that, under the leadership of current Rector and Vice-Chancellor, Prof Francis Petersen, a period of regeneration and innovation is upon the university. Tied to this concept is the idea of self-evaluation and improvement. The idea of challenges and coming up with solutions excites him.  

“I think for a while, my main aim will be to bring the university, the provincial Department of Health, and the school in alignment, ensuring that we are all pulling in the same direction to achieve the same goal.”  

“At the end of the day, the goal here is to provide quality health care to the people of South Africa, while the Department of Health, the university, and society each function in different environments – coming together and understanding each other’s needs and having a common goal – excellent health care in this country for all our citizens.”

Lessons learned from surgery and running COVID-19 task teams

Prof Pearce, who was awarded the UFS Chancellor’s Medal for outstanding service during the April graduation ceremonies, says lessons learned from being both a surgeon and running COVID-19 task teams, are that strategic organisational processes need to be in place – systems strengthened, the policies and procedures adapted, and comprehensive planning taking place. 

However, he says, one must also bear in mind that we have a history of very high academic standards in the School of Clinical Medicine, so you want to improve on that rather than go backwards.

“I learned a lot from surgery and COVID-19 that will equip me in future. COVID-19 taught me about organisational management, disaster management, funding, resource management, people management skills, development, etc.  
“Running the Department of Surgery, one of the largest departments in the faculty with multiple inputs and personalities, has taught me that you are only as strong as the team behind you. I have an amazing team behind me in this new role, whether it is the dean, vice-dean, heads of department, administration, rectorate, and so forth.” 

He will continue to work at the Universitas Hospital; however, being fully employed by the university, he will only be doing some calls and working over weekends.  

“As a surgeon, theatre has always been my safe haven, my place of meditation, my place of peace, and I am sad to say goodbye to surgery and the Department of Surgery – it has been loyal, and I am grateful to everyone in the department; but I think as with all good things, there is a time to come and a time to go.”

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept