Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 February 2022 | Story NONSINDISO QWABE | Photo UFS Photo Archive
Prof Rodwell Makombe, Associate Professor in the Department of English on the Qwaqwa Campus.

Prof Rodwell Makombe, Associate Professor in the Department of English on the university’s Qwaqwa Campus, will be joining a prestigious group of more than 100 academic staff from African universities for this year’s University of Michigan African Presidential Scholars (UMAPS) programme.

Each year, the programme hosts more than 180 academics from different universities in Africa for a five-month fellowship, providing academics with access to the university’s research libraries and facilities, on-campus housing, health insurance, and a stipend to cover living expenses.

Fellowship an opportunity for collaboration and career growth 
 
The fellowship comes at just the right time for Prof Makombe, who said he is looking forward to mentorship for his growth and career development in a new environment and atmosphere. “I am very excited about this opportunity, which I think has come at the right time. It will expose me to a broad network of scholars, which I need for collaboration purposes, and it will also give me an opportunity to share my research and learn from the experiences of other scholars from different parts of the world. Given that I will be working closely with a faculty member of the university for the duration of the fellowship, the programme will also provide me with the mentorship that I need for my growth and career development.”
 
Apart from the exposure to broad academic and research scholars, he said he was looking forward to having the time and resources to finish writing his second book.

“I have just published my first book in October 2021, and I have already started doing research for my second book. The fellowship will give me time and space to focus on writing the book without the usual interruptions associated with my teaching responsibilities. The book focuses on cultures of resistance in post-Mugabe Zimbabwe. It is a sequel to my recent book,Cultural texts of resistance in Zimbabwe: Music, Memes, Media, which explores discursive resistance in Zimbabwe in the context of crisis.”

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept