Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 October 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Matseliso Monnapula, Dr Jana Vermaas, and Liezl van der Walt
Matseliso Monnapula, Dr Jana Vermaas, and Liezl van der Walt. They are all involved in a research project to grow a new textile that resembles leather.

Pure curiosity. 

That was what gave rise to the development of a new textile, which was created in the Textile Lab and later evaluated for consumer use in the Sensory Lab of the University of the Free State (UFS).

Matseliso Monnapula, a master’s student in the Division of Consumer Science, is experimenting with bacterial cellulose, which is produced as a by-product in the fermentation process when making kombucha. Her goal is to determine its efficacy as a possible sustainable textile alternative for use in the apparel industry.

She says finding this textile alternative was initially the result of pure curiosity. “My brother brews kombucha, so we always wondered in what other ways this fascinating mass of cellulose could be used.”

“It was upon further research that we discovered that there actually is more to it – from within the textile industry, biomedical and tissue engineering disciplines, paper and audio speaker manufacturing, to even the food industry,” states Monnapula.

She had a greater inclination towards its use in the textile industry and presented the idea to her supervisor, Dr Jana Vermaas, Lecturer in the Department of Sustainable Food Systems and Development. “From there it was all systems go,” remarks Monnapula. 

The interesting process of growing this textile entails brewing tea (black, green, or rooibos tea can be used for this purpose) and adding sugar, vinegar, or previously brewed kombucha to maintain a favourable pH level. “One then inoculates the sweetened tea with a starter culture of acetic acid bacteria and yeasts, also known as SCOBY (symbiotic culture of bacteria and yeasts). It is then left for two to four weeks under specific conditions, during which the fermentation process takes place. In this period, the cellulose gradually starts to form on the liquid’s surface,” explains Monnapula, who was assisted by her co-supervisor, Prof Celia Hugo from the Department of Microbiology and Biochemistry. 

Vegan leather

The process of making bacterial cellulose accounts for the many benefits of this leather-like textile. “The process and its aftermath are significantly less detrimental to the environment than most commercial textiles produced today. It is known that the textile industry is characterised by the excessive usage of chemicals, water, energy, and the generation of toxic effluent that is not always disposed of correctly, thereby affecting human, vegetal and animal well-being. Moreover, it eliminates animal cruelty, and in relation to real leather, it will also be more available and less expensive.”

“Secondly,” she states, “bacterial cellulose is biodegradable, which is one way of contributing towards a circular economy in the textile industry, while moving away from the traditional linear economy we know today.”

Within the apparel industry, this textile, which is mostly suitable for accessories, can be used to make products that are typically made of leather. For instance, bags, jackets, shoes, and bucket hats. 

From kombucha to leather-like textile
Samples of the new textile made from Kambucha. Photo: Leonie Bolleurs 

 

Versatile use

She states that according to their knowledge, the bacterial cellulose has not yet been grown in South Africa or Africa. However, it has been extensively researched in America and Europe. “There have been several experiments to make biodegradable packaging, facial masks in the cosmetics industry, sausage casings, and fruit rolls – and interestingly enough – it can even be enjoyed as a native Philippine dessert known as nata de coco. This goes to show how versatile it is,” she says.

Monnapula says there is still plenty of room for improvement and further development before reaching a point where she can introduce her work as a contender in the South African market. For instance, the waterproof capability of the textile is yet to be perfected. “More research is also necessary to enhance its hydrophobic and decreasing its hydrophilic properties.”

She is also of the opinion that further dyeing, using environmentally friendly methods and natural dyes to obtain a wider variety of colours, is necessary. 

Penetrating the market

Once it is ready, this textile will be a marketable product that can be manufactured for commercial use. “A few European start-up companies have recently managed to penetrate the market and introduce apparel made from bacterial cellulose. I believe that upon further development and modifications, we can eventually follow suit,” says Monnapula.

The bacterial cellulose textile was evaluated in the UFS Sensory Lab, a facility mostly used to test food products. Liezl van der Walt, Sensory Lab Manager, states that the Sensory Lab plays a crucial role in determining the consumer acceptance of new products as well as how the product can be improved. She believes that the textile project was just the beginning of many more textile-related sensory panels to take place. 


Within the apparel industry, this textile can be used to make products that are typically made of leather, including bags, jackets, shoes, and bucket hats. – Matseliso Monnapula

 


News Archive

dti announces nominees for 2008 Science and Technology Awards
2008-10-03

 

At the announcement of the nominees for the 2008 dti Technology Awards were, from the left: Prof. Schalk Louw, Department of Zoology and Entomology, Mr Sipho Zikode, Deputy Director General at the Department of Trade and Industry (dti), Dr Romilla Maharaj, Executive Director: Human and Institutional Capacity Development at the National Research Foundation (NRF), and Mr Ephraim Baloyi, Director: Innovation and Technology at the dti.

Mr Michael Chung, master’s student in Plant Pathology, explaining some of the research conducted in the Centre for Plant Health Management (Cephma).

Prof. Schalk Louw, Department of Zoology and Entomology, and Mr Ephraim Baloyi, Director: Innovation and Technology at the dti in the Cephma laboratory.

   
dti announces nominees for 2008 Science and Technology Awards

The Department of Trade and Industry’s (dti) Deputy Director-General, Mr Sipho Zikode, yesterday announced the nominees for the 2008 dti Technology Awards which will take place on 30 and 31 October in Bloemfontein.

The purpose of these annual awards is to recognise those researchers, private institutions and students who performed well in terms of innovation and technology development, says Mr Ephraim Baloyi, Director: Innovation and Technology at the dti.

The awards are a combination of the Annual Awards of the different dti programmes supporting technology in industry. They are the Technology and Human Resources for Industry Programme (THRIP), administered by the National Research Foundation (NRF), the Support Programme for Industrial Innovation (SPII), administered by the Industrial Development Corporation, and seda Technology Programme (stp), administered by the Small Enterprise Development Agency.

The dti delegation also visited the laboratory of Prof. Schalk Louw of the UFS to view the work of this former dti Technology Awards recipient. Prof. Louw is a member of the UFS Centre for Plant Health Management (Cephma) team that won a 2007 Technology Award for groundbreaking research work on kenaf (a South African commercial fibre crop used, amongst others, in the automotive industry). The research of the Cephma team is supported by the NRF’s THRIP programme.

The awards are hosted in a different province each year to increase awareness around the dti’s technology support for researchers, small enterprises, large industries and business incubators.

Media Release
Issued by: Leonie Bolleurs
Tel: 051 401 2707
Cell: 083 645 5853
3 October 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept