Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 October 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Matseliso Monnapula, Dr Jana Vermaas, and Liezl van der Walt
Matseliso Monnapula, Dr Jana Vermaas, and Liezl van der Walt. They are all involved in a research project to grow a new textile that resembles leather.

Pure curiosity. 

That was what gave rise to the development of a new textile, which was created in the Textile Lab and later evaluated for consumer use in the Sensory Lab of the University of the Free State (UFS).

Matseliso Monnapula, a master’s student in the Division of Consumer Science, is experimenting with bacterial cellulose, which is produced as a by-product in the fermentation process when making kombucha. Her goal is to determine its efficacy as a possible sustainable textile alternative for use in the apparel industry.

She says finding this textile alternative was initially the result of pure curiosity. “My brother brews kombucha, so we always wondered in what other ways this fascinating mass of cellulose could be used.”

“It was upon further research that we discovered that there actually is more to it – from within the textile industry, biomedical and tissue engineering disciplines, paper and audio speaker manufacturing, to even the food industry,” states Monnapula.

She had a greater inclination towards its use in the textile industry and presented the idea to her supervisor, Dr Jana Vermaas, Lecturer in the Department of Sustainable Food Systems and Development. “From there it was all systems go,” remarks Monnapula. 

The interesting process of growing this textile entails brewing tea (black, green, or rooibos tea can be used for this purpose) and adding sugar, vinegar, or previously brewed kombucha to maintain a favourable pH level. “One then inoculates the sweetened tea with a starter culture of acetic acid bacteria and yeasts, also known as SCOBY (symbiotic culture of bacteria and yeasts). It is then left for two to four weeks under specific conditions, during which the fermentation process takes place. In this period, the cellulose gradually starts to form on the liquid’s surface,” explains Monnapula, who was assisted by her co-supervisor, Prof Celia Hugo from the Department of Microbiology and Biochemistry. 

Vegan leather

The process of making bacterial cellulose accounts for the many benefits of this leather-like textile. “The process and its aftermath are significantly less detrimental to the environment than most commercial textiles produced today. It is known that the textile industry is characterised by the excessive usage of chemicals, water, energy, and the generation of toxic effluent that is not always disposed of correctly, thereby affecting human, vegetal and animal well-being. Moreover, it eliminates animal cruelty, and in relation to real leather, it will also be more available and less expensive.”

“Secondly,” she states, “bacterial cellulose is biodegradable, which is one way of contributing towards a circular economy in the textile industry, while moving away from the traditional linear economy we know today.”

Within the apparel industry, this textile, which is mostly suitable for accessories, can be used to make products that are typically made of leather. For instance, bags, jackets, shoes, and bucket hats. 

From kombucha to leather-like textile
Samples of the new textile made from Kambucha. Photo: Leonie Bolleurs 

 

Versatile use

She states that according to their knowledge, the bacterial cellulose has not yet been grown in South Africa or Africa. However, it has been extensively researched in America and Europe. “There have been several experiments to make biodegradable packaging, facial masks in the cosmetics industry, sausage casings, and fruit rolls – and interestingly enough – it can even be enjoyed as a native Philippine dessert known as nata de coco. This goes to show how versatile it is,” she says.

Monnapula says there is still plenty of room for improvement and further development before reaching a point where she can introduce her work as a contender in the South African market. For instance, the waterproof capability of the textile is yet to be perfected. “More research is also necessary to enhance its hydrophobic and decreasing its hydrophilic properties.”

She is also of the opinion that further dyeing, using environmentally friendly methods and natural dyes to obtain a wider variety of colours, is necessary. 

Penetrating the market

Once it is ready, this textile will be a marketable product that can be manufactured for commercial use. “A few European start-up companies have recently managed to penetrate the market and introduce apparel made from bacterial cellulose. I believe that upon further development and modifications, we can eventually follow suit,” says Monnapula.

The bacterial cellulose textile was evaluated in the UFS Sensory Lab, a facility mostly used to test food products. Liezl van der Walt, Sensory Lab Manager, states that the Sensory Lab plays a crucial role in determining the consumer acceptance of new products as well as how the product can be improved. She believes that the textile project was just the beginning of many more textile-related sensory panels to take place. 


Within the apparel industry, this textile can be used to make products that are typically made of leather, including bags, jackets, shoes, and bucket hats. – Matseliso Monnapula

 


News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept