Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 October 2022 | Story Prof Johan van Niekerk, Dr Ismari van der Merwe, and Ms Elzmarie Oosthuizen | Photo Supplied
Sustainable food
World Food Day is celebrated annually on 16 October to promote global awareness and action to uplift those who suffer from hunger and to highlight the need to ensure access to healthy diets for all.

Opinion article by Prof Johan van Niekerk, Dr Ismari van der Merwe, and Ms Elzmarie Oosthuizen, Department of Sustainable Food Systems and Development, University of the Free State.



World Food Day is celebrated annually on 16 October to promote global awareness and action to uplift those who suffer from hunger and to highlight the need to ensure access to healthy diets for all. However, in 2022 we are faced with an ongoing pandemic, conflict, global warming, rising prices, and international tensions. All these factors are affecting global food security. Educators have an enormous task to help students develop skills to help build a sustainable world where everyone has regular access to nutritious food. 

Although we have progressed towards building a better world, many people have been left behind – people who cannot benefit from human development, innovation, or economic growth. Millions of people worldwide cannot afford a healthy diet, putting them at high risk of food insecurity and malnutrition. But ending hunger is not only about supply. Enough food is produced today to feed everyone on the planet. The problem is access and availability of nutritious food. People worldwide are suffering from the domino effects of challenges that know no borders.

Students have insufficient balance for food

South Africa has seen a significant expansion of student enrolment in the higher education system, with nearly one million students attending one of the 26 public universities. The number of students in South Africa's higher education system is far below other middle-income developing countries. Therefore, the government aims to increase university enrolment to 1,5 million by 2030. However, the cost of attending university greatly exceeds the financial means of most students. 
Students must divide their budget between rent, tuition, utilities, and the remaining insufficient balance for food, which ultimately increases their food insecurity risk.
Moreover, the transition of school learners to university students is more complicated than foreseen since lifestyle changes have health implications, where the excitement is combined with stress from pressure to perform well academically in a competitive environment. Research has found that first-year students are exceptionally prone to food insecurity. They have newfound independence and are still learning to cope with the milieu away from home. A study on the Bloemfontein Campus by the Department of Nutrition and Dietetics indicated that students experience considerable problems in managing their tasks, time, and finances. The challenge of reduced social support results in lengthy emotional and physical separation from family and friends, which influences standard eating patterns. The students have poor nutritional knowledge, limited earning potential, and a lack of budgeting skills and resources for healthy food preparation. Finally, sociocultural diversity is another factor to consider. It influences students' food patterns, while the total student population of the UFS, about 37 800 full-time students, reflects a rich sociocultural diversity. 

Intake of vegetables, fruit, and protein among students is minimal

When required to earn a degree, food insecurity represents a short period of time, but it can precipitate poor lifelong health behaviour and increased risks of chronic diseases. Prolonged exposure may contribute to the development of obesity. The research found food insecurity is related to poor mental health and academic performance. Students endorse increased rates of depression and anxiety, decreased concentration, and low concentration marks. It leads to lower academic achievement and undermines the goals of tertiary education. The importance of studying the aspects related to students' sustainable food consumption behaviour lies in the fact that, at this age, they begin to develop specific consumption patterns that will have long-term effects.

The average of current first-year students forms part of Generation Zoomers (ages 19-22 years). Generation Zoomers (Gen Z) grew up in specific circumstances, known as the first truly digital natives. They grew up living, working, and socialising with the internet and social media. This generation's economic circumstances are more constrained. The latter is partly due to the rise in university tuition fees. Gen Z forms part of diverse communities seen as networked young citizens, but growing social inequalities often limit their opportunities. This generation is labelled as the stay-at-home generation, with indoor and online socialising on the rise. 

During a study by the Department of Sustainable Food Systems and Development on the South Campus of the UFS (student population – ages 19-22 years), we found that the intake of vegetables, fruit, and protein among our students is minimal and will lead to deficiencies. At the same time, rice and pasta are part of their everyday diet. Money to buy these foods is still an immense problem. Students indicated that they would prefer healthy foods when they had the resources to afford it.

No Student Hungry initiative

Gender and student consumption patterns showed that breakfast consumption decreased, with male students consuming breakfast more regularly than females. The results indicated that students preferred soft drinks (energy) and water (available). They argued that the high consumption of fast food is due to its wide availability and accessibility in commercial and informal outlets. The informal vendors make fast food more available and accessible to low-budget student groups due to the lower food prices. The unhealthy consumption movement is driven by aggressive advertising practices and lower costs. 

Students consume more saturated fat snacks, refined carbohydrates, sweetened carbonated beverages, and diets that are short in polyunsaturated fatty acids (PUFAs) and fibres. Researchers indicated that these unhealthy diets and the increasingly sedentary lives of students could lead to non-communicable diseases such as type 2 diabetes mellitus and heart disease.

Currently, the department forms part of the NO STUDENT HUNGRY (NSH) initiative by establishing vegetable tunnels on campus. It remains an indispensable objective of the department, though, to increase the proportion of university students who receive information on unhealthy dietary patterns; however, nutrition knowledge has only moderate effects on students' attitudes and behaviours. Therefore, we use our Food Security modules as an effective strategy to educate our student community on sustainable food systems by ensuring skills development. Teaching contextual skills (e.g., how to plan and prepare nutritious meals within time and financial constraints) could address this unhealthy behaviour of the UFS students and work towards the sustainable development goal of NO HUNGER in 2030

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept