Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2022 | Story Anthony Mthembu | Photo iFlair Photography
Umakhoyane
Umakhoyane: Indigenous South African instrument affiliated with the Zulu tribe.

According to Dr Absolum Nkosi, Senior Lecturer in the Odeion School of Music at the University of the Free State (UFS), “ancient traditional instruments form part of the African heritage”. As such, with Heritage Day upon us, it is imperative to highlight these South African indigenous musical instruments. 

Some of the most prominent South African musical instruments currently in the possession of the UFS, include uhadi and umakhoyane, also referred to as ugubhu. At first glance, one would think that these instruments are the same. This would not be an incorrect assumption. In fact, these instruments share similarities in terms of purpose and how they have been used throughout their existence. 

Similarities and differences between the instruments
For instance, both uhadi and umakhoyane (ugubhu) are instruments traditionally played by women. Dr Nkosi maintains that songs accompanied by any of these instruments are usually personal, as they cover topics such as love, family, and relationships. Furthermore, the songs that were sung with the assistance of these instruments, were also about a reflection of the individual’s mental state. As such, the fact that both instruments have a very soft sound aided in that reflective process. 

However, there are key variations between these instruments. Uhadi is a single-string acoustic bow affiliated with the Xhosa tribe, whereas umakhoyane is a single-string acoustic bow affiliated with the Zulu tribe. In addition, umakhoyane possesses a bridge in the middle that uhadi does not. Furthermore, there is also a difference in the sound produced by the two instruments. “Uhadi produces one sound when it is played with the string openly without touching it; you can then get the second sound by pinching and releasing the string using the index finger and a thumb. However, umakhoyane produces two notes when playing the string on the upper and the lower level. The bridge in the middle of the string divides it into an upper part (low tone) and a lower part (high tone),” Dr Nkosi indicated.  

It is imperative to note that these instruments have adapted over time. In fact, they have been used in genres such as Jazz and contemporary Afro music. Therefore, Dr Nkosi believes that the preservation of these indigenous instruments is essential, as it keeps the African musical identity alive. 

News Archive

UFS boasts with world class research apparatus
2005-10-20

 

 

At the launch of the diffractometer were from the left Prof Steve Basson (Chairperson:  Department of Chemistry at the UFS), Prof Jannie Swarts (Unit for Physical and Macro-molecular Chemistry at the UFS Department of Chemistry), Mr Pari Antalis (from the provider of the apparatus - Bruker SA), Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS), Prof André Roodt (head of the X-ray diffraction unit at the UFS Department of Chemistry) and Prof Teuns Verschoor (Vice-Rector:  Academic Operations at the UFS).

UFS boasts with world class research apparatus
The most advanced single crystal X-ray diffractometer in Africa has been installed in the Department of Chemistry at the University of the Free State (UFS).

“The diffractometer provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, currently synthesized in the Department of Chemistry.  It also includes the area of homogeneous catalysis where new compounds for industrial application are synthesised and characterised and whereby SASOL and even the international petrochemical industry could benefit, especially in the current climate of increased oil prices,” said Prof Andrè Roodt, head of the X-ray diffraction unit at the UFS Department of Chemistry.

The installation of the Bruker Kappa APEX II single crystal diffractometer is part of an innovative programme of the UFS management to continue its competitive research and extend it further internationally.

“The diffractometer is the first milestone of the research funding programme for the Department of Chemistry and we are proud to be the first university in Africa to boast with such advanced apparatus.  We are not standing back for any other university in the world and have already received requests for research agreements from universities such as the University of Cape Town,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the UFS.

The diffractometer is capable of accurately analysing molecules in crystalline form within a few hours and obtain the precise geometry – that on a sample only the size of a grain of sugar.   It simultaneously gives the exact distance between two atoms, accurate to less than fractions of a billionth of a millimetre.

“It allows us to investigate certain processes in Bloemfontein which has been impossible in the past. We now have a technique locally by which different steps in key chemical reactions can be evaluated much more reliable, even at temperatures as low as minus 170 degrees centigrade,” said Prof Roodt.

A few years ago these analyses would have taken days or even weeks. The Department of Chemistry now has the capability to investigate chemical compounds in Bloemfontein which previously had to be shipped to other, less sophisticate sites in the RSA or overseas (for example Sweden, Russia and Canada) at significant extra costs.

Media release
Issued by:Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
19 October 2005   

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept