Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 January 2023 | Story Edzani Nephalela | Photo Henco Myburg
Thembeni Nxangisa
Free State MEC for Agriculture and Rural Development, Thembeni Nxangisa, representing Minister Barbara Creecy during the Fifth Global Change Conference at the University of the Free State

From 30 January to 2 February 2023, the University of the Free State is hosting researchers, members of industry and government, businesspeople, funders, and foreign diplomatic missions for the fifth National Global Change Conference.

The purpose of the conference is to share and debate current local research and development initiatives that form part of the Global Change Grand Challenge (GCC5), one of the focus areas developed under the Department of Science and Innovation's Ten-Year Innovation Plan.  

The GCC5 supports knowledge generation and technological innovation to enable South Africa, Africa, and the world to respond to global environmental change, including climate change, in an informed and innovative way.

The four-day event is taking place on the Bloemfontein Campus of the UFS under the theme: ‘Research and innovation accelerating transformations to global sustainability’. It is jointly organised by the Department of Science and Innovation, the National Research Foundation, the South African Global Change Science Committee, and the UFS.  

Topics on the conference agenda include the state of the southern oceans; the role of physics in power grids; climate and health, water resources, and global crises; and agriculture in a changing environment, among other topics.  

For more information on GCC5, kindly click here.

Follow the discussion on UFS social media platforms.

 



News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept