Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 July 2023 | Story NONSINDISO QWABE | Photo Supplied
Buhle Hlatshwayo
Buhle Hlatshwayo has been selected for the 2023 Fulbright Foreign Language Teaching Assistant (FLTA) Programme.

Buhle Hlatshwayo, a master’s student on the UFS Qwaqwa Campus, has been selected for the 2023 Fulbright Foreign Language Teaching Assistant (FLTA) programme. Despite initially doubting herself, she took a leap of faith and applied for the programme, which turned out to be a successful decision. The Fulbright Programme is a prestigious scholarship programme that provides opportunities for international educational exchanges. The programme’s overarching aim is to enhance intercultural relations across more than 160 countries.

Hlatshwayo will be teaching isiZulu at the University of Georgia in Athens, Georgia, for an academic year. She leaves South Africa at the end of July.

Hlatshwayo is currently pursuing her Master of Arts with specialisation in English on the UFS Qwaqwa Campus, where she also completed her undergraduate and honours degrees in the same field. Her research focuses on East African Arab migration narratives to the Global North, with a focus on exploring the legacies of colonialism. She is also a learning facilitator in the same department.

A prestigious opportunity 

A friend and colleague, Mxolisi Mabaso, encouraged her to apply, knowing her desire to explore opportunities abroad. 

“I am still in awe of how this opportunity came about, especially because someone else saw potential in me while I didn’t believe in myself. My good friend pushed me to apply, because he knew I always wanted the opportunity to go abroad. I am thrilled and honoured to be part of this prestigious programme. I am looking forward to experiencing the US culture and ways of being.”

On her love for English, Hlatshwayo said she has always been fond of the subject but never considered it as a potential career path. After completing her undergraduate degree, Dr Kudzayi Ngara, a Senior Lecturer in the Department of English on the Qwaqwa Campus, encouraged her to pursue an honour’s degree in English, which ultimately shaped her academic journey.

Professional and personal growth awaits

While in the US, Hlatshwayo said she is looking forward to immersing herself in American culture and pursuing courses in American studies. She aims to learn more about diverse cultural backgrounds and share her South African heritage and cultural values with the international community. She said this exchange of experiences and ideas will broaden her horizons and contribute to her academic and professional development.

“The opportunities would not present themselves if you were not capable. If you know your goals, seize any opportunity that will enable you to get there. I was not granted this opportunity because I’m smarter than everyone else, but because of how I articulated my genuine motivations with future goals and how the Fulbright programme will help me achieve them,” she said.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept