Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2023 | Story André Damons | Photo Supplied
Dr Mirriam Moleko
Dr Mirriam Moleko, a lecturer in the Department of Mathematics, Natural Sciences, and Technology Education in the UFS Faculty of Education, participated in the National Research Foundation’s Black Academics Advancement Programme fellowship and got the opportunity to visit universities and schools in the USA for three weeks.

After completing the National Research Foundation’s Black Academics Advancement Programme (BAAP) fellowship, a lecturer from the University of the Free State (UFS) now wants to train more teachers on issues of access and inclusivity in different mathematics settings. She also wants to establish a centre for access and inclusivity to promote quality teaching that caters to a diverse learner population.

Dr Mirriam Moleko, a lecturer in the UFS’s Department of Mathematics, Natural Sciences, and Technology Education in the Faculty of Education, participated in the BAAP fellowship, an initiative of the National Research Foundation (NRF) and the FirstRand Foundation (FRF), from 2021 to 2022. She also got the opportunity to visit universities and schools in the USA for three weeks.

Supporting emerging academics

Dr Moleko says the BAAP is a prestigious NRF programme which supports well-structured research projects with achievable aims, sound methodologies, and demonstrated prudent use of funds. The programme supports emerging academics to ensure that they develop strong research skills, collaborate with prolific scholars in their fields, visit other universities abroad, give public lectures, and attend international conferences to establish an international footprint.

“The programme allows the candidates awarded the grant to focus on research for two years” she says. “I managed to run my teacher community research project successfully during this period. My goal as an academic and a researcher is to produce work that teachers can relate to and be able to apply in their profession. I have always aspired to empower teachers to be knowledgeable and resourceful”.

“Furthermore, my goal is to strive to partake in critical conversations that are taking place within the mathematics education field, and to contribute my skills and knowledge in addressing the existing challenges, thus being part of the solution. I believe the skills that I have gained on how to conduct quality research will assist me in achieving my goals,” she added.

Benefit from funding

During the period of her fellowship she learned about forming partnerships and collaborating with other scholars in her field, which she believes is an important skill to possess as a developing scholar.

Dr Moleko says the programme played a pivotal role in the attainment of numerous significant accomplishments in her professional career thus far. She also benefitted in terms of funding, which helped her undertake autonomous research and advanced training in her area of expertise, as well as facilitated engagement in collaborative research ventures with esteemed professionals and researchers, both domestically and abroad.

“The research leave that I got enabled me to successfully conceptualise, strategise, and implement a research endeavour that yielded a more profound comprehension of the research gap that I had identified within the teacher community, thus culminating in multiple publications in esteemed periodicals.

“The NRF-BAAP funding also enabled me to undertake training, thereby refining my skill set and augmenting my comprehension of intricate principles. The experience proved to be a crucial factor in my vocational growth and bolstered my aptitude for scholarly inquiry. It also afforded me the chance to engage in mentoring endeavours for fledgling researchers.”

Transformation of the Professoriate Mentoring Programme

Dr Moleko, who is part of the UFS Transformation of the Professoriate Mentoring Programme, says this programme is an excellent initiative which is aimed at preparing young academics for future promotions and offering them skills to be competitive. The programme’s goals include building strong academics who will follow in the footsteps of the university’s current leaders.

She says the programme is critical in supporting young academics by connecting them with seasoned mentors and scholars from various fields of study. It is essential for young academics in terms of maximising their learning, expanding their network, and gaining opportunities to help facilitate their growth.

“I see the programme as a catalyst for change necessary for the university to realise the desired results,” Dr Moleko says.

During her visit to the USA she spent two weeks at Boston College and the University of Rhode Island, and also visited the Center for Applied and Specialised Technology, the Paul V. Sherlock Center on Disabilities (Sherlock Center), and the TechACCESS Center.

“The purpose of my visit was to establish networks and collaborate with prolific scholars outside South Africa on research engagements. Furthermore, the visit was intended for me to meet with my international mentors in person regarding research engagements.

“During my research visit, Prof Elizabeth Dalton from Rhode Island University and a UDL specialist, and I focused on several academic conversations and demonstrations of Universal Design for Learning (UDL) strategies and approaches, as well as the sharing of many online resources available to support the implementation of UDL in inclusive settings.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept