Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2023 | Story Leonie Bolleurs | Photo Supplied
Prof Bahta
For the past three years, Prof Yonas Bahta has studied the resilience of smallholder livestock farmers in agricultural drought, and the competitiveness of agri-food commodities.

The agricultural sector is marked by farmers’ daily struggles, including price hikes, climate change effects, and pest and disease outbreaks.

Prof Yonas T Bahta, Associate Professor and astute National Research Foundation (NRF) C2-rated researcher in the Department of Agricultural Economics at the University of the Free State (UFS), found that smallholder farmers who received drought relief support saw an improvement in their welfare. The study also found that economic capital, social capital, human capital, and natural capital substantially affected the welfare of smallholder farmers.

Agricultural drought

These findings came from the study, titled: The resilience of households to agricultural drought in the Northern Cape province of South Africa. Prof Bahta’s aim with this study was threefold – to assess household resilience to agricultural drought among smallholder livestock farmers, to evaluate the welfare of smallholder farming households affected by agricultural drought, and to identify factors influencing agricultural drought resilience and food insecurity among smallholder livestock farmers.

During his investigation, he found that only 9% of the smallholder livestock farmers were resilient to agricultural drought. According to him, farming households with access to credit, farmers who received assistance from the government (such as training and feed) during drought, and farmers who are part of a cooperative proved to be more resilient to agricultural drought.

When it comes to food security, he discovered that assets, social safety nets, and indicators of adaptive capacity had a positive influence on households' ability to withstand food insecurity. Alternatively, climate change indicators negatively impacted households’ resilience to food insecurity.

For the past three years, he has studied the resilience of smallholder livestock farmers in agricultural drought. He believes that resilience – the ability to bounce back from adversities – is crucial.

According to him, both the smallholder livestock sector (farmers) and the agrifood industry need to develop resilience to effectively cope with and recover from agricultural drought, macroeconomic stability (inflation), competitiveness, productivity, and other related factors.

Competitiveness of agri-food commodities

Prof Bahta also launched investigations into the competitiveness of agri-food commodities in South Africa as well as Namibia.

The studies were titled: Competitiveness of Namibia’s Agrifood Commodities: Implications for Food Security and Competitiveness of South Africa’s Agrifood Commodities.

In these studies, he respectively looked at the competitiveness of South Africa’s and Namibia’s agrifood products, the factors that influence it, and its implication for food security.

In both countries, he discovered a combination of comparative advantage and disadvantage.

“South Africa and Namibia exhibited a trade structure that was less concentrated and not dependant on international trade in the agri-food industry, having minimal impact on Namibia's food security. The productivity of agriculture and GDP per capita positively influenced the comparative advantage of South Africa, whereas land productivity and GDP per capita influenced the degree of food insecurity in Namibia,” explains Prof Bahta the main research findings.

Research outputs

The study on the resilience of smallholder livestock farmers was supported by funding from the National Research Foundation. To explore the competitiveness of agri-food commodities, Prof Bahta collaborated with the Namibia University of Science and Technology (NUST), benefiting from their strong existing academic relationship. The UFS Office for International Affairs played a key role in facilitating this study, with research partnerships existing between the universities of both countries.

According to Prof Bahta, the findings of these two studies have resulted in the publication of more than 13 articles in journals ranking in the highest (Q1) and second highest categories (Q2) in the specific field. A paper will also be presented at the upcoming International Food and Agribusiness Management Association (IFAMA) international conference in New Zealand from 17 to 20 June 2023.

Furthermore, five popular articles on the main findings of the studies (written in non-technical language) were also published on these topics, focusing on the farmers and policy makers (as a policy brief and popular) as the target audience. These articles looked at, among others, the impact of policy intervention on food insecurity in times of shock; coping strategies of smallholder livestock farmers during food insecurity shocks; measuring the resilience of female smallholders in South Africa; and farming for success.

This study also resulted in the graduation of three master's students (two with distinction) and three honours students.

Looking ahead, Prof Bahta emphasises the necessity for conducting similar studies targeting both commercial and smallholder farmers, focusing on crops and livestock in various provinces across South Africa. He also feels that connections need to be established with universities besides NUST.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept