Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 June 2023 | Story Dr Yolandi Schoeman | Photo Supplied

In response to the recent cholera outbreaks in South Africa, the University of the Free State is at the forefront of developing a ground-breaking solution that aims to revolutionise low-cost domestic wastewater treatment and transform the country’s water infrastructure in rural areas. Led by the team at the UFS Centre for Environmental Management (CEM) in collaboration with the Council for Scientific and Industrial Research (CSIR), this innovative approach is centred around ecological engineering and offers a promising solution to the pressing water security concerns and increased pollution risks facing the nation.

South Africa has faced significant challenges in integrating water resource management and environmental preservation, leading to compromised water security and escalating pollution risks. Traditional wastewater treatment methods have struggled to cope with the deterioration of infrastructure, institutional capacity limitations, and rising hydraulic loads, resulting in the discharge of pollutants into rivers. This has raised concerns about the environmental and public health risks of heavy metals, emerging contaminants, and ‘forever chemicals’ (chemicals have an exceptionally long lifespan and do not naturally break down over time).

Natural-based solutions to address issues

Prof Paul Oberholster, Director of the CEM, says to address these critical issues, the centre has introduced a range of natural-based solutions, including phycoremediation, phytoremediation, and microbial bioremediation. Phycoremediation, a cutting-edge biological clean-up technology, uses indigenous micro or macro algae to remove contaminants from wastewater effluents.

“Phycoremediation effectively transforms pollutants such as carbon, nitrogen, phosphorus, sulfates, and salts into benign substances by harnessing nutrient enrichment. This process offers multiple advantages, including tackling various pollutants simultaneously, creating commercially beneficial compounds, sequestering CO2, and producing biohydrogen. Furthermore, phycoremediation is a cost-effective and resilient process that can accommodate varying substance quantities and consistencies.

“Microbial bioremediation, another pioneering technique, utilises microorganisms to naturally break down and degrade soil, water, and air pollutants. By leveraging the natural metabolic processes of microorganisms, microbial bioremediation reduces harmful substances to non-toxic or less toxic forms,” Prof Oberholster says. “This environmentally friendly method has shown success in cleaning up contaminated sites, including industrial areas, agricultural fields, disaster-stricken areas, and wastewater treatment plants.” 

This phycoremediation technology for domestic wastewater, developed in collaboration with the CSIR and the African Development Bank, is suitable for small to medium rural plants. It does not use electricity or any dangerous chemicals, and can be used on the assisting infrastructure. The technology has already been rolled out in the Western Cape, Limpopo, and Malawi.

According to Prof Oberholster, implementing these ecological engineering solutions provides transformative opportunities for small to medium-sized wastewater treatment works in South Africa. By incorporating these technologies, local communities can enhance treatment capacity, create employment opportunities, and recycle materials, while benefiting from cost-effective and environmentally conscious solutions. Upgrading existing treatment works becomes feasible, reducing the need for significant infrastructure investments.

Dr Yolandi Schoeman, a postdoctoral student in CEM, says cholera, a severe diarrheal disease caused by the bacterium Vibrio cholerae, has been a significant concern in South Africa. Understanding the causes, warning signs, and preventive measures is crucial in combating this deadly disease. Cholera outbreaks often occur in areas with poor sanitation, inadequate access to clean water, and overcrowding. Contaminated water sources, such as rivers or wells, become breeding grounds for the bacterium, which is then transmitted through contaminated food and water. Early identification of warning signs, including severe diarrhoea, vomiting, and dehydration, is essential for timely intervention.

Causes of cholera

Contaminated water: Cholera outbreaks often occur in areas with poor sanitation and inadequate access to clean water. The bacterium Vibrio cholerae thrives in contaminated water sources such as rivers, lakes, or wells.

Contaminated food: Cholera can also be transmitted through consuming contaminated food, especially raw or undercooked seafood, or produce irrigated with contaminated water.

Poor sanitation: Improper waste disposal, lack of proper sewage systems, and unhygienic conditions contribute to the spread of cholera. When human waste containing the cholera bacterium contaminates water sources or food, the disease can spread rapidly.

Warning signs of cholera

Diarrhoea: Cholera is characterised by profuse watery diarrhoea. The stools are often described as "rice water" due to their appearance.

Vomiting: Along with diarrhoea, cholera may cause vomiting, leading to rapid dehydration.

Dehydration: Cholera can cause severe dehydration due to losing fluids and electrolytes. Signs of dehydration include dry mouth, excessive thirst, decreased urine output, rapid heart rate, and low blood pressure.

Preventive measures to combat cholera

Access to clean water: Ensuring a clean water supply is crucial in preventing cholera. Communities should have access to safe drinking water sources, and measures should be taken to prevent contamination of water sources.

Hygiene practices: Promoting good hygiene practices, such as regular handwashing with soap and clean water, can help prevent transmission of cholera. Handwashing should be done before handling food or eating, and after using the toilet.

Sanitation improvements: Proper waste disposal systems, improved sewage systems, and sanitation facilities are essential in preventing the contamination of water sources and the spread of cholera.

Health education: Conducting health education campaigns to raise awareness about cholera symptoms, transmission routes, and preventive measures is crucial. Communities at risk should be educated on safe water practices, proper hygiene, and the importance of seeking medical help if symptoms occur.

Surveillance and rapid response: Establishing robust surveillance systems to detect cholera cases early and respond rapidly is vital. This includes improving laboratory diagnostics, training healthcare workers, and enhancing communication between health authorities and communities.

Vaccination: Vaccination against cholera can be an effective preventive measure, especially in high-risk areas or during outbreaks. Oral cholera vaccines can provide protection against the disease. It is important to note that vaccines alone may not be sufficient to control cholera. Improving water and sanitation infrastructure, disaster anticipation and response, promoting good hygiene practices, and implementing appropriate public health measures are also crucial in preventing and controlling cholera outbreaks.

“To prevent cholera outbreaks, a multi-faceted approach is required,” Dr Schoeman says. “Individuals and communities must prioritise access to clean water by ensuring a clean water supply and promoting hygiene practices such as handwashing with soap. Sanitation improvements, including proper waste disposal and improved sewage systems, are essential in preventing the contamination of water sources.” 

She says health education campaigns should raise awareness about cholera symptoms, transmission routes, and preventive measures, targeting communities at risk. “Establishing robust surveillance systems and emergency response teams, improving laboratory diagnostics, and enhancing communication between health authorities and communities is crucial for rapid response to cholera cases.” 

In addition to these preventive measures, nature-based systems offer innovative approaches to cholera prevention by harnessing the power of natural ecosystems. Conserving and restoring wetlands, which act as natural filters, can help purify water and reduce the presence of pathogens like Vibrio cholerae. The integration of ecological engineering solutions, such as phycoremediation and microbial bioremediation, into wastewater treatment processes not only addresses pollution concerns but also contributes to preventing the contamination of water sources and reducing the risk of cholera outbreaks.

The CEM's pioneering work aligns seamlessly with South Africa's commitment to sustainable development and the United Nations' Sustainable Development Goal 6, which aims to ensure universal access to clean water and sanitation. By integrating ecological engineering solutions like phycoremediation into public sector service delivery efforts, the CEM is driving positive change, improving quality of life for South African communities, and protecting precious water resources.

“The challenges we face in wastewater management, water security, and preventing cholera outbreaks require innovative solutions that prioritise ecological engineering and sustainability. Through our research and collaboration with local health authorities, we aim to develop preventive measures to combat cholera outbreaks and create a resilient water infrastructure for South Africa,” Prof Oberholster says.

The CEM's work has already demonstrated its efficacy and potential by piloting these advanced treatment technologies in the Southern African Development Community (SADC) countries. “Further research and capacity-building efforts within South Africa will enable the widespread implementation of these solutions and address the unique challenges small and medium municipalities face,” Prof Oberholster adds. 

“The University of the Free State is committed to driving positive change, contributing to sustainable development, and ensuring universal access to clean water and sanitation in South Africa. By combining academic expertise, innovative technologies, and collaborative partnerships, the university aims to pave the way for a future where water resources are protected, cholera outbreaks are prevented, and communities thrive.”

News Archive

African Student Affairs Conference a huge success
2011-05-24

 
Mr Rudi Buys, UFS Dean of Student Affairs, Mr. Folabi Obembe, Managing Director of Worldview International, Ms Birgit Schreiber, Director of the Centre for Student support services at the University of the Western Cape, Dr. Augustinah Duyilemi, Dean of Student Affairs at the Adekunleh Ajasin University in Nigeria, Dr. Christina Lunceford, assistant Director for the Centre for Research on Educational Access and Leadership at California State University in America, and Prof. Cecil Bodibe, student affairs veteran and consultant.
Photo: Earl Coetzee

The African Student Affairs Conference (ASAC), which took place on our Main Campus last week, was a major success, with two days of lectures and discussions and two pleasant social gatherings, where delegates had the opportunity to get to know each other.

The conference, hosted on African soil for the first time, and co-hosted by the University of the Western Cape (UWC), started on Wednesday 18 May 2011 with an informal welcoming session. Delegates got to meet each other and Mr Rudi Buys, UFS Dean of Student Affairs, explained the meaning of South African words like "kuier" and "lekker'.

The official start of events took place on Thursday 19 May 2011, in the Reitz Hall in our Centenary Complex. The conference was attended by delegates from universities across the continent and aimed to place the focus on issues relating to student affairs in an African context.

Delegates shared and exchanged strategies, ideas and resources, and discussed issues related to the work of student affairs professionals. The conference hoped to promote an exchange of best practice and assist attendees in identifying successful programmes.

Among the topics discussed on the first day, were “Constructing Post-Conflict Democracy on campus: a case study of transformation of student governance and political engagement as post-conflict intervention”, by Mr. Buys, and a discussion on ways in which social and online media can be used to ease the challenges of student interaction, development and support, by Ms Birgit Schreiber, Director of the Centre for Student Support Services at UWC.

A panel discussion, led by Mr Buys and several members of our Interim Student Council (ISC), discussed the specific challenges faced at the UFS.  The importance of buy-in from role-players in decisions taken by University management in order to ensure their success, was discussed, using the UFS and our recent changes as an example.

The successful integration of residences on campus inevitably came under the spotlight and the recently resolved Reitz-saga was named as a catalyst in getting students less apathetic and more involved in attempts at creating racial and social harmony.

Dr Christina Lunceford, Assistant-Director of the Centre for Research on Educational Access and Leadership at California State University, presented a paper entitled A National Approach to Building Capacity in Student Affairs in South African Higher Education.

She commented on the fact that there is little or no philosophical framework or explicit theory that informs practice of student services in South Africa.

According to Dr Lunceford, student development should be a key concern for every department or unit within student services and emphasized the need for a centralized student development unit at each university.
She also touched on the need for institutions to implement support from international student affairs professional associations, professional development for student affairs practitioners, the utilization of technology to support professionals in the field, and working with international partners to explore future opportunities, as ways in which student affairs can be used to drive performance and change at universities.

The conference continued in the Scaena theatre on Friday 20 May 2011, with presentations by Dr Augustinah Duyileme, Dean of Student Affairs at Adekunle Ajasin University in Nigeria, and Prof. Bobby Mandew, Executive Director of Student Affairs at the University of Johannesburg (UJ).

Dr Duyileme presented a paper on the challenges faced by Nigerian universities with regard to student conflict and protests, which often turn violent, and how such violence can be curbed through proper planning and management.

Prof. Mandew presented a very well-received presentation on UJ’s successful off-campus housing initiative, which involves home-owners and business owners in the areas surrounding their campuses.

Their approach demonstrated how proper planning can prevent problems associated with over-population in private homes and conflict with neighbours of the university, usually related to an influx of students into residential neighbourhoods.

This problem is faced by many universities, as more and more students flock to universities on the continent and campus residents cannot accommodate them.

The conference came to a close on Friday, with most delegates agreeing that the exchange of knowledge which took place was extremely valuable.

Ms Deborah Lahlan, of Nigeria, said: “This is an important conference for Africa and it should become a regular event.”
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept