Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2023 | Story André Damons | Photo Sonia Small
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the research team that is working on various research projects relating to fungi casing yeast.

Fungal infections affect more than one billion people each year, of which more than 150 million cases are severe and life-threatening, causing 1.7 million deaths a year. In South Africa it is estimated that diseases caused by fungal infections total more than three million cases a year. These figures are especially shocking given that prior to 1980, fungal infections were not a major health problem. The WHO has recently published a list of priority pathogens in which fungi are classified in critical, high- and medium- priority groups. Candida species are found in all three levels and Cryptococcus species in critical and medium groups,” says Prof Pohl-Albertyn.

It is for these reasons that researchers in the Department of Microbiology and Biochemistry at the University of the Free State (UFS) are working on various research projects investigating new treatment options beyond the established antifungals. Prof Carlien Pohl-Albertyn, National Research Forum (NRF) SARChI Research Chair in Pathogenic Yeasts, leads the team that is working on various research projects relating to fungi casing yeast.

Multidrug-resistant yeast

One of the yeasts being researched is Candida auris – a multidrug-resistant yeast that can cause severe infections in humans, particularly in people who are hospitalised or have weakened immune systems. C. auris was first identified in 2009 in Japan and has since been reported in over 49 countries.

According to Prof Pohl-Albertyn, C. auris is of concern because it is often resistant to multiple antifungal drugs, making it difficult to treat. In addition, it can survive on surfaces in healthcare settings, which can contribute to its spread between patients, causing outbreaks in hospitals. “Due to its multidrug resistance and potential for transmission, C. auris has been designated by the Centers for Disease Control and Prevention (CDC) as a serious global health threat and listed as the second most critical fungal pathogen in the World Health Organisation (WHO) fungal critical priority group.

C. auris possesses virulence factors such as increased thermotolerance, high salinity tolerance, biofilm formation, and extra cellular enzyme secretion, which are the major contributing factors to its multidrug resistance profile and virulence. Even though C. auris has a variety of virulence factors that it employs against its human host to develop an infection, its virulence mechanisms remain unclear,” says Prof Pohl-Albertyn.

Therefore, several research projects investigate this pathogenic yeast. All of them started with the development of CRISP-Cas9 gene editing tools for this yeast, in order to be able to delete specific genes in this yeast to study their roles. These tools are also constantly being improved for greater efficiency by students under the supervision of Prof Koos Albertyn. Two current projects deal with the function of specific secreted enzymes in the virulence of C. auris.

Environmental yeast

Another yeast being researched, under the supervision of Prof Olihile Sebolai, is Cryptococcus neoformans, an environmental yeast found in trees and soil contaminated with bird droppings. Moreover, it can be airborne and when inhaled it lodges in the lungs (in alveoli) and can cause primary lung infection, explains Prof Pohl-Albertyn.

Cryptococcus neoformans causes AIDS-defining illnesses in people living with HIV/AIDS. To the point, it was not surprising when the WHO declared it as the first critical fungal pathogen of concern. Dissemination to other organs has been reported where it crosses the epithelium barrier by secreting proteases (a class of enzymes that break down proteins in the host) that compromise the tight junctions between the epithelial cells.

The current projects investigate the interaction between the proteases secreted by C. neoformans and co-infecting viruses, such as SARS-CoV-2 and influenza. The SARS-CoV-2 virus is activated by proteases in the host and proteases also help the influenza virus to enter and infect the host cells. Since the host proteases are similar to those secreted by C. neoformans, these projects are focused on determining if the yeast proteases can also help the viruses to cause infection. This project is also extended to study Candida albicans proteases as this is also a common co-infecting yeast in COVID-19 patients (for more detail on C. albicans).

Another project looks at the application of plants as sources for novel drugs against C. neoformans. This is important since 75-80% of African and Asian populations still rely on traditional or complementary/alternative medicines for their primary health-care needs. Coupled to this, modern medicines have become increasingly expensive and thus inaccessible to many in developing countries. Moreover, there is a shift to more “organic” and “vegan” lifestyles as well as the use of herbal medicines to prevent or manage the development of certain diseases.

Yeast contaminated water

“Considering the severity of invasive fungal infection, it is important to study the dissemination and proliferation of various pathogenic or potentially pathogenic fungal species in our surrounding environments. It is crucial to identify major vectors that aid in the spread of pathogenic yeast to prevent infections in susceptible individuals, which mainly include immunocompromised or immunosuppressed individuals.

“Candida, Cryptococcus and Rhodotorula species are commonly found in a variety of water sources with which humans are in frequent contact through daily activities like bathing, washing of clothes and cooking. This recent information further warrants the investigation into the possibility that fungal infections may occur through contact with yeast contaminated water,” concludes Prof Pohl-Albertyn.

She says it is thus important to investigate the presence and antifungal susceptibility of yeast found in water as well as to identify ways to monitor potential fungal outbreaks, possibly through wastewater surveillance. The research aims to identify potentially pathogenic yeast species as well as to quantify levels of azole, specifically fluconazole, in wastewater. In addition, the fluconazole susceptibility of these isolates will be assessed in an attempt to link azole pollution of the environment to antifungal drug resistance development.

News Archive

UFS appoints Jansen as rector
2009-03-15

The Council of the University of the Free State (UFS) is pleased to announce that it has agreed to offer the post of Rector and Vice-Chancellor of the UFS to internationally renowned academic Prof. Jonathan Jansen, making him the first black Rector and Vice-Chancellor of the institution in its 105-year history.

This decision was taken by an overwhelming majority, signalling the commitment of the UFS to continue as a world-class university that will at the same time pursue the objective of transformation in the interests of the entire university community.

Announcing the decision today (Friday, 13 March 2009), the Chairperson of the UFS Council Judge Faan Hancke said the UFS was privileged to have had candidates of the highest calibre apply for the position. An international executive search agency specialising in academic appointments had assisted the UFS Council in its search for top quality candidates.

“This has been a truly vibrant, transparent and participatory selection process, which has resulted in our institution being able to make this historic appointment,” said Judge Hancke.

“I appeal to the entire UFS community, staff, students and alumni to support the new Rector and Vice-Chancellor in his endeavour to lead this institution to greater heights. This is an important moment in the life our institution. We should celebrate this achievement as a united university community,” Judge Hancke said.

“As a council we are now unanimously behind Prof. Jansen and want to assure him of our full support,” Judge Hancke said.

In response to his appointment, Prof. Jansen said it was a great privilege and that he would really do his utmost best to be of service to the UFS.

In his statement of intent which was submitted earlier as part of his application for the post, Prof. Jansen indicated that if appointed he “would be deeply honoured to lead one of South Africa’s great universities”.

“The University of the Free State has gained a national reputation for three things: [1] its turnaround strategy in terms of financial stability in a context where external funding has been uncertain; [2] its research strategy which has seen a steady and impressive growth in research outputs; and [3] its managerial decisiveness in the wake of the Reitz incident,” Prof. Jansen said.

Regarding the challenges facing the UFS, Prof. Jansen said in his statement of intent: “The UFS has to find a way of integrating classroom life while at the same time ensuring the promotion of Afrikaans, an important cultural trust of the institution, as well as Sesotho and other indigenous languages. It has to bring academic staff, administrative staff, workers, students, as well as the parent community behind a compelling vision of transformation that works in the interest of all members of the university community. And it has to rebuild trust and confidence among students and staff in the mission of the university.”

Prof. Jansen is a recent Fulbright Scholar to Stanford University (2007-2008), former Dean of Education at the University of Pretoria (2001-2007), and Honorary Doctor of Education from the University of Edinburgh. He is a former high school Biology teacher and achieved his undergraduate education at the University of the Western Cape (BSc), his teaching credentials at UNISA (HED, BEd) and his postgraduate education in the USA (MS, Cornell; PhD, Stanford).

He is also Honorary Professor of Education at the University of the Witwatersrand and Visiting Fellow at the National Research Foundation.

His most recent books are Knowledge in the Blood (2009, Stanford University Press) and his co-authored Diversity High: Class, Color, Character and Culture in a South African High School (2008, University Press of America). In these and related works, he examines how education leaders balance the dual imperatives of reparation and reconciliation in their leadership practice.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
13 March 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept