Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 November 2023 | Story Cindé Greyling | Photo SUPPLIED
Student Athletes
The KovsieSport and SCD teams and student-athletes during the Project Empower and GROW certificate and celebration ceremony.

In the latter part of 2023, KovsieSport (KS) Soccer, in collaboration with Student Counselling and Development (SCD) at the University of the Free State (UFS), introduced a transformative self-development initiative for student-athletes. The GROW programme, an acronym for growth, resilience, optimism, and wellness, is a meticulously structured, resilience-based project firmly rooted in Positive Psychology (PP). PP methodologies aim to foster human strengths, psychological capabilities, and overall flourishing. 

Cultivating an optimised mind for an optimised body 

Dr Munita Dunn-Coetzee, Director of SCD, emphasises the critical link between physical and mental well-being for student-athletes. Pushing their bodies to excel significantly influences their mental health,” she notes. “Creating awareness and a supportive culture within sports teams is important.”  The GROW programme, initially piloted by students four years ago on the Bloemfontein and Qwaqwa campuses, demonstrated statistically significant improvements in students’ subjective well-being, resilience, hope, and noteworthy reductions in experiences of depression and stress. Encouraged by these positive outcomes, the programme was subsequently integrated into KovsieSport. 

Balancing the equation: The other side of sport

Tobias van den Bergh, Senior Psychologist: SCD, underscores the multifaceted nature of well-being. While physical exercise is a potent natural medicine supporting mental health, he highlights the importance of addressing emotional, spiritual, cognitive, social, and physical aspects of well-being. Van den Bergh cautions against the potential harm associated with exercise when linked to high-pressure performance goals or unhealthy objectives, advocating instead for a holistic approach to well-being. 

Bridging the gap: Impact of the GROW programme

The GROW programme successfully bridges the gap between sports and mental health, fostering increased trust among student-athletes. Godfrey Tenoff, Senior Official at KS Football, observes enhanced cohesion among participants, affirming that the programme positively influenced their preparedness for life’s challenges. Makhaola Mohale, one of the attendees, encapsulates the sentiment, stating, “The biggest takeaway was to always have a heart and mind of gratitude.”

Celebrating victories: Stop at the top

On 27 October 2023, the GROW Certificate and Celebration Ceremony acknowledged student-athletes who completed the project, the event served as a reminder that, beyond the pursuit of victories in sports, investing in mental health is a significant triumph. In the words of the author, “Congratulations to all our student-athletes who completed the GROW-programme.”

UFS Student Careline:

  • 0800 00 6363
  • Text: 43302

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept