Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 October 2023 | Story André Damons | Photo André Damons
Prof Mathys Labuschagne
Prof Chris Viljoen, Head of the School of Biomedical Sciences; Prof Gert van Zyl, Dean of the Faculty of Health Sciences; Prof Francis Petersen, UFS Vice-Chancellor and Principal; and Prof Mathys Labuschagne, Head of the Clinical Simulation and Skills Unit (CSSU), during the unit’s 10-year anniversary celebration.

In just 10 years, the Clinical Simulation and Skills Unit (CSSU) at the University of the Free State (UFS) went from being just a dream to becoming a national and international leader in medical simulation training.

The CSSU forms part of the School of Biomedical Sciences and was officially opened on 21 February 2013. The CSSU celebrated its 10-year anniversary on Thursday, 12 October 2023.

Prof Mathys Labuschagne, Head of the CSSU, said at the evening’s celebration that the vision and dream came true 10 years ago. “I think the requirement for the successful integration of simulation into a curriculum is first and foremost that it is based on research evidence. It is not a thumb-sucking exercise”.

“It is really seated in research and then you need passion and dedication. You cannot be successful without that, and for that I need to thank my staff – without your passion and dedication it would not be possible to excel,” said Prof Labuschagne.

Simulation important for patient safety

According to the professor, good networking is also important – between departments, professions and companies outside the university and hospital. He said simulation is important for improving patient safety and expanding the training platform.

“By doing simulation, we can train students who cannot always be accommodated on the training platform. There are also a lot of educational advantages to using simulation. Our training activities in the past 10 years grew tremendously. At the moment we have about 4000 undergraduate and postgraduate student contacts a year. Then we do a lot of certification and Continuing Professional Development (CPD) courses. During COVID-19 we did PPE training and ICU training for hospital and clinical staff in a safe environment.

“I am really proud of our research output. In the past 10 years we published 34 articles, and have another six articles currently in press. We have successfully completed eight master’s and seven PhD dissertations and there are now five students who are enrolled and all of them are simulation-associated. I cannot believe it has already been 10 years. I am very proud of the unit, and we strive for excellence in simulation education and training.”

Highlights of unit

Prof Gert van Zyl, Dean of the UFS Faculty of Health Sciences, congratulated the unit on achieving this milestone. Taking a trip down memory lane, he mentioned the names of colleagues who played a role in establishing the unit and said their contributions might not be visible in name in the unit, but they are recognised by them in achieving this milestone.

“It is an excellent achievement to have seven PhDs in 10 years. Well done. Another highlight is supporting the establishing of other simulation units at Nelson Mandela University who came to learn from us. They didn’t have to go the US. The training of staff and students during COVID-19, we had the facility. Let us not forget our simulation role at undergraduate and postgraduate training.

Cutting edge of simulation-based education and training

Prof Francis Petersen, UFS Vice-Chancellor and Principal, who gave a toast at the celebration, said the occasion is an opportunity to reflect on the excellent work done over the past decade and to consider how the unit is ideally placed to meet the aspirations that the UFS has for Vision 130 and the strategy of the university.

“The work of this unit has put the University of the Free State at the cutting edge of simulation-based education and training and the ongoing efforts of all of our staff in the unit who assist with the planning, the development, the setup, and the running of scenarios are acknowledged and greatly appreciated. I want to congratulate the leadership and the staff of the unit for the excellent work you are doing,” said Prof Petersen.

According to him, simulation education has numerous advantages such as improved patient safety, skills development, learning without involving real patients and the transfer of knowledge to the clinical environment. It creates a well-structured teaching and learning framework where simulation can be used as an educational tool assist in grasping the practical aspects of learning.

The training of specialised skills and deliberate practice are the key drivers behind clinical simulation as a training technique. It can also be applied as a tool to prepare students for a crisis situation, which requires high levels of preparedness and that is a very important aspect, said Prof Petersen.

“All these aspects of simulation-based education are something that relates very much to our vision and strategy. We want to be a research-led university, which means that it is not only doing research, but we try to focus on evidence and the research also helps us in the undergraduate programme to make it much more competitive.

“It also brings to the fore some qualities of our values, value of quality, value of impact and value of care. In addition, clinical simulation creates a vibrant learning experience for students and contributes towards our goal to meet the highest standards of excellence and impact in our teaching, learning and research.”

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept