Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 October 2023 | Story André Damons | Photo André Damons
Prof Mathys Labuschagne
Prof Chris Viljoen, Head of the School of Biomedical Sciences; Prof Gert van Zyl, Dean of the Faculty of Health Sciences; Prof Francis Petersen, UFS Vice-Chancellor and Principal; and Prof Mathys Labuschagne, Head of the Clinical Simulation and Skills Unit (CSSU), during the unit’s 10-year anniversary celebration.

In just 10 years, the Clinical Simulation and Skills Unit (CSSU) at the University of the Free State (UFS) went from being just a dream to becoming a national and international leader in medical simulation training.

The CSSU forms part of the School of Biomedical Sciences and was officially opened on 21 February 2013. The CSSU celebrated its 10-year anniversary on Thursday, 12 October 2023.

Prof Mathys Labuschagne, Head of the CSSU, said at the evening’s celebration that the vision and dream came true 10 years ago. “I think the requirement for the successful integration of simulation into a curriculum is first and foremost that it is based on research evidence. It is not a thumb-sucking exercise”.

“It is really seated in research and then you need passion and dedication. You cannot be successful without that, and for that I need to thank my staff – without your passion and dedication it would not be possible to excel,” said Prof Labuschagne.

Simulation important for patient safety

According to the professor, good networking is also important – between departments, professions and companies outside the university and hospital. He said simulation is important for improving patient safety and expanding the training platform.

“By doing simulation, we can train students who cannot always be accommodated on the training platform. There are also a lot of educational advantages to using simulation. Our training activities in the past 10 years grew tremendously. At the moment we have about 4000 undergraduate and postgraduate student contacts a year. Then we do a lot of certification and Continuing Professional Development (CPD) courses. During COVID-19 we did PPE training and ICU training for hospital and clinical staff in a safe environment.

“I am really proud of our research output. In the past 10 years we published 34 articles, and have another six articles currently in press. We have successfully completed eight master’s and seven PhD dissertations and there are now five students who are enrolled and all of them are simulation-associated. I cannot believe it has already been 10 years. I am very proud of the unit, and we strive for excellence in simulation education and training.”

Highlights of unit

Prof Gert van Zyl, Dean of the UFS Faculty of Health Sciences, congratulated the unit on achieving this milestone. Taking a trip down memory lane, he mentioned the names of colleagues who played a role in establishing the unit and said their contributions might not be visible in name in the unit, but they are recognised by them in achieving this milestone.

“It is an excellent achievement to have seven PhDs in 10 years. Well done. Another highlight is supporting the establishing of other simulation units at Nelson Mandela University who came to learn from us. They didn’t have to go the US. The training of staff and students during COVID-19, we had the facility. Let us not forget our simulation role at undergraduate and postgraduate training.

Cutting edge of simulation-based education and training

Prof Francis Petersen, UFS Vice-Chancellor and Principal, who gave a toast at the celebration, said the occasion is an opportunity to reflect on the excellent work done over the past decade and to consider how the unit is ideally placed to meet the aspirations that the UFS has for Vision 130 and the strategy of the university.

“The work of this unit has put the University of the Free State at the cutting edge of simulation-based education and training and the ongoing efforts of all of our staff in the unit who assist with the planning, the development, the setup, and the running of scenarios are acknowledged and greatly appreciated. I want to congratulate the leadership and the staff of the unit for the excellent work you are doing,” said Prof Petersen.

According to him, simulation education has numerous advantages such as improved patient safety, skills development, learning without involving real patients and the transfer of knowledge to the clinical environment. It creates a well-structured teaching and learning framework where simulation can be used as an educational tool assist in grasping the practical aspects of learning.

The training of specialised skills and deliberate practice are the key drivers behind clinical simulation as a training technique. It can also be applied as a tool to prepare students for a crisis situation, which requires high levels of preparedness and that is a very important aspect, said Prof Petersen.

“All these aspects of simulation-based education are something that relates very much to our vision and strategy. We want to be a research-led university, which means that it is not only doing research, but we try to focus on evidence and the research also helps us in the undergraduate programme to make it much more competitive.

“It also brings to the fore some qualities of our values, value of quality, value of impact and value of care. In addition, clinical simulation creates a vibrant learning experience for students and contributes towards our goal to meet the highest standards of excellence and impact in our teaching, learning and research.”

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept