Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 October 2023 | Story André Damons | Photo André Damons
Prof Mathys Labuschagne
Prof Chris Viljoen, Head of the School of Biomedical Sciences; Prof Gert van Zyl, Dean of the Faculty of Health Sciences; Prof Francis Petersen, UFS Vice-Chancellor and Principal; and Prof Mathys Labuschagne, Head of the Clinical Simulation and Skills Unit (CSSU), during the unit’s 10-year anniversary celebration.

In just 10 years, the Clinical Simulation and Skills Unit (CSSU) at the University of the Free State (UFS) went from being just a dream to becoming a national and international leader in medical simulation training.

The CSSU forms part of the School of Biomedical Sciences and was officially opened on 21 February 2013. The CSSU celebrated its 10-year anniversary on Thursday, 12 October 2023.

Prof Mathys Labuschagne, Head of the CSSU, said at the evening’s celebration that the vision and dream came true 10 years ago. “I think the requirement for the successful integration of simulation into a curriculum is first and foremost that it is based on research evidence. It is not a thumb-sucking exercise”.

“It is really seated in research and then you need passion and dedication. You cannot be successful without that, and for that I need to thank my staff – without your passion and dedication it would not be possible to excel,” said Prof Labuschagne.

Simulation important for patient safety

According to the professor, good networking is also important – between departments, professions and companies outside the university and hospital. He said simulation is important for improving patient safety and expanding the training platform.

“By doing simulation, we can train students who cannot always be accommodated on the training platform. There are also a lot of educational advantages to using simulation. Our training activities in the past 10 years grew tremendously. At the moment we have about 4000 undergraduate and postgraduate student contacts a year. Then we do a lot of certification and Continuing Professional Development (CPD) courses. During COVID-19 we did PPE training and ICU training for hospital and clinical staff in a safe environment.

“I am really proud of our research output. In the past 10 years we published 34 articles, and have another six articles currently in press. We have successfully completed eight master’s and seven PhD dissertations and there are now five students who are enrolled and all of them are simulation-associated. I cannot believe it has already been 10 years. I am very proud of the unit, and we strive for excellence in simulation education and training.”

Highlights of unit

Prof Gert van Zyl, Dean of the UFS Faculty of Health Sciences, congratulated the unit on achieving this milestone. Taking a trip down memory lane, he mentioned the names of colleagues who played a role in establishing the unit and said their contributions might not be visible in name in the unit, but they are recognised by them in achieving this milestone.

“It is an excellent achievement to have seven PhDs in 10 years. Well done. Another highlight is supporting the establishing of other simulation units at Nelson Mandela University who came to learn from us. They didn’t have to go the US. The training of staff and students during COVID-19, we had the facility. Let us not forget our simulation role at undergraduate and postgraduate training.

Cutting edge of simulation-based education and training

Prof Francis Petersen, UFS Vice-Chancellor and Principal, who gave a toast at the celebration, said the occasion is an opportunity to reflect on the excellent work done over the past decade and to consider how the unit is ideally placed to meet the aspirations that the UFS has for Vision 130 and the strategy of the university.

“The work of this unit has put the University of the Free State at the cutting edge of simulation-based education and training and the ongoing efforts of all of our staff in the unit who assist with the planning, the development, the setup, and the running of scenarios are acknowledged and greatly appreciated. I want to congratulate the leadership and the staff of the unit for the excellent work you are doing,” said Prof Petersen.

According to him, simulation education has numerous advantages such as improved patient safety, skills development, learning without involving real patients and the transfer of knowledge to the clinical environment. It creates a well-structured teaching and learning framework where simulation can be used as an educational tool assist in grasping the practical aspects of learning.

The training of specialised skills and deliberate practice are the key drivers behind clinical simulation as a training technique. It can also be applied as a tool to prepare students for a crisis situation, which requires high levels of preparedness and that is a very important aspect, said Prof Petersen.

“All these aspects of simulation-based education are something that relates very much to our vision and strategy. We want to be a research-led university, which means that it is not only doing research, but we try to focus on evidence and the research also helps us in the undergraduate programme to make it much more competitive.

“It also brings to the fore some qualities of our values, value of quality, value of impact and value of care. In addition, clinical simulation creates a vibrant learning experience for students and contributes towards our goal to meet the highest standards of excellence and impact in our teaching, learning and research.”

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept