Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 October 2023 | Story Lacea Loader | Photo SUPPLIED
Prof Paul Oberholster
Prof Paul Oberholster, newly appointed Dean of the Faculty of Natural and Agricultural Sciences.

The University of the Free State (UFS) has appointed Prof Paul Oberholster as Dean: Faculty of Natural and Agricultural Sciences as of 1 January 2024. 

Strong networks and winner of prestigious awards for research, innovation, and leadership 

Prof Oberholster is currently the Director: Centre for Environmental Management at the UFS. He completed his undergraduate and postgraduate degrees at the UFS before obtaining a PhD in water resource management at the University of Pretoria. 

After several years in secondary education, Prof Oberholster started his scientific research career as a Senior Scientist at the Council for Scientific and Industrial Research (CSIR) in 2007. In 2017, he became a Chief Scientist (the highest scientific position at the CSIR, and senior management) managing large multidisciplinary projects on the African continent related to integrated water resource management and natural-based treatment solutions/ecological engineering. 

During his time at the CSIR, he acted as extraordinary professor and lecturer in several academic departments at different institutions, including Stellenbosch University, the University of Pretoria, and the University of the Western Cape. During the same time, he received several prestigious awards for research, innovation, and leadership. 

In 2019, Prof Oberholster joined the UFS as Director of the Centre for Environmental Management and also received the National Science and Technology Foundation (NSTF) award in the category Water Research Commission, with a focus on natural-based passive phyco-remediation and phytoremediation treatment technology. In 2022, he was elected as a member of the Academy of Science of South Africa (ASSAf) in recognition of his academic achievements in South Africa, and in 2023 he was appointed as the Managing Director of the Ecological Engineering Institute of Africa (EEIA). 

Rated among top 2% in the world in the scientific category of engineering/technology, ecological engineering and environmental engineering. 

Currently, Prof Oberholster is rated among the top 2% in the world in the scientific category of engineering/technology, ecological engineering, and environmental engineering. “Prof Oberholster has an extensive and impressive international research standing and has established extensive networks and partnerships. He can lead and manage the faculty in support of the UFS Vision 130’s ultimate intent for the coming years to be a research-led, student-centred, and regionally engaged university,” says Prof Francis Petersen, UFS Vice-Chancellor and Principal. 

“It is a privilege to be part of the leadership team in the Faculty of Natural and Agricultural Sciences – we will ensure that the faculty is known nationally and internationally as an excellent faculty serving our community. We aim to consolidate and build on the strengths of the university in order to extend its excellence in research and teaching and learning, which is imbedded in the UFS Vision 130,” says Prof Oberholster. 

Prof Oberholster will succeed the current Dean, Prof Danie Vermeulen, who will be retiring at the end of December 2023. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept