Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 September 2023 | Story André Damons | Photo Supplied
radiation dose distribution
The patient is still under anaesthesia, the placement of the brachytherapy applicators is completed, and they are connected to the Iridium source for the radiation to be given.

Medical personnel at the Universitas Academic Hospital and the University of the Free State (UFS) in Bloemfontein became the first in Southern Africa to use Interstitial brachytherapy as a method for treating cervical cancer. 

A multidisciplinary team, consisting of an anaesthetist, clinical oncologists, application specialists, medical physicists, radiation therapy radiographers and professional nurses, completed the first interstitial cervical cancer brachytherapy in Southern Africa at Universitas Academic Complex in June this year.

Prof Alicia Sherriff, Head of the UFS Department of Oncology and a clinical oncologist, explained: “Brachytherapy is a method of internal radiation therapy, where a source of radiation is placed inside or near the cancer. This type of radiation travels only a short distance and makes it possible to deliver curative doses to the cancer while staying within the tolerance of the surrounding bladder, rectum, and small bowel.” 

She further emphasised that intracavitary brachytherapy has been an essential component of the curative management of cervical cancer since 1938.

According to her, feasibility studies were published for the use of applicators that combine intracavitary and interstitial brachytherapy in 2006. In 2014 prospective clinical trials started reflecting on the clinical value to improve local control for the locally advanced cervical cancers with combining intracavitary and interstitial brachytherapy to get higher doses of radiation where the cancer has grown outside of the cervix. Interstitial brachytherapy where the applicators are placed into the tissue with cancer are also used in prostate and breast cancer. 

Second-most common cancer in South African women

As per the Catalan Institute of Oncology (ICO) and the International Agency for Research on Cancer (IARC) information Centre on Human Papilloma Virus and cancer publication of March 2023, the current new diagnoses of cervical cancer annually in South Africa are 10,702 with 5,870 patients passing away annually due to cervical cancer. It is the second-most common cancer in women in South Africa and the most common among women between 15 and 44. Due to late/delayed presentation and diagnoses most cervical cancer patients seen have more advanced stages where the cancer has infiltrated outside of the cervix into the surrounding tissue.

“At the Universitas Academic Complex we have been approaching cervical brachytherapy with CT (Computer Tomography)-based image guidance for more than a decade already and the past five years we have been doing Adaptive CT-based image guided brachytherapy. 

“This means that with each brachytherapy treatment the cancer and all the surrounding normal organs are delineated based on a new CT image to ensure that we consider how the cancer has shrunk from one brachytherapy to the next and to see how we can limit the dose to the surrounding organs but at the same time achieve the highest possible dose of radiation with each treatment,” says Prof Sherriff. 

Planning to expand the use to other cancers

The intracavitary brachytherapy applicators which are used most frequently are placed within the cervix and uterus and deliver high doses there but cannot address the infiltration into the surrounding tissue adequately, she continued. “That is where these additional needles that are placed via the Venezia applicator into the surrounding tissue give the ability to also reach those areas with high-dose radiation while sparing the organs.”

Prof Sherriff explained that the interstitial brachytherapy does add additional time, expertise and logistical planning to the management and would not be utilised for all cervical cancer patients, but for those patients with locally advanced disease whose general health would support a more aggressive approach. The other academic training institutions are aiming to add interstitial brachytherapy to their platforms as well as at the UFS which is also planning to expand the use to other cancers. 

Save more lives

The MEC for Health in the Free State province, Mathabo Leeto, has congratulated medical professionals on this groundbreaking medical intervention. 

She said this breakthrough is in line with goals set by the United Nations in not only the provision of quality health services, but also and importantly, saving lives.

“This milestone is responsive to our targets for improvement of women’s health and reducing mortality. It is responsive also to Goal 3 of the United Nations’ Sustainable Development Goals which seeks to reduce global maternal mortality ratio, ensure universal access to sexual and reproductive health-care services, including for family planning, information and education, and the integration of reproductive health into national strategies and programmes,” she said.

“Hopefully this breakthrough will help us save many more lives. I wish to congratulate everyone who contributed to this innovative way of cancer treatment and assure you that your province and the people are indebted to you,” concluded Leeto.

 


The medical staff who were involved in the first interstitial cervical cancer brachytherapy in Southern Africa were, from left: Dr Marnus Booyens (Anaesthetist); Dr Karin Vorster (Head Clinical unit and Clinical Oncologist); Dr Willie Shaw (Head of Medical Physics for the division of Radiation Oncology); Khalil Ben Fredj (Application Specialist ELEKTA for the TIMEA region and medical physicist); Prof Alicia Sherriff (HOD Oncology and clinical oncologist); Dr Dedri O’Reilly(medical physicist); Chantel Stroebel (Radiation therapy radiographer at brachytherapy); Dr Lourens Strauss (Medical physicist); Karl Sachse (Medical physicist); Sr Angelique Engelbrecht (professional nurse); Marga Claassen (Clinical and Commercial Account Specialist, SA for Elekta and Medical physicist).

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept