Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
19 April 2024 | Story André Damons | Photo Supplied
Dr Milton Mogotsi
Dr Milton Mogotsi graduated on Thursday with the degree Doctor of Philosophy with specialisation in Virology during the Faculty of Health Sciences at the University of the Free State (UFS) autumn graduation ceremonies.

A pilot study for his master’s degree not only ignited Dr Milton Mogotsi’s passion but he was also inspired by the fact that this was a newly emerging field of research in the discipline of virology at the time. This eventually led to him pursuing a PhD and ing on his research.

Dr Mogotsi graduated on Thursday (18 April) with the degree Doctor of Philosophy with specialisation in Virology during the Faculty of Health Sciences at the University of the Free State (UFS) autumn graduation ceremonies. Prof Martin Nyaga, Head of the Next Generation Sequencing Unit (UFS-NGS) and an associate professor in the Division of Virology, was his promotor and Prof Trudi O’Neill from the Department of Microbiology and Biochemistry his co-promotor.

“It feels great! It was exhausting and overwhelming at times, but that light at the end of the tunnel will start to be brighter. I feel so proud of myself and very free. Nothing beats that liberating feeling that I have successfully completed a doctoral degree and now a new chapter of my life begins. I believe this post-PhD period is an excellent time for reflecting on my attributes and revising my CV, and with a PhD degree under my belt, I look forward to an abundance of opportunities that will soon open up,” says Dr Mogotsi after graduating.

Research

According to him, he was first introduced into this research concept when he was doing his master’s degree in microbiology. “Although it was more of a pilot study aiming to assess the feasibility of conducting this type of research on a larger scale, we made some interesting findings which we published in an international journal.

“I obtained my degree with distinction, receiving an award for Best Master’s Dissertation in Microbiology. The findings of this research really ignited my passion, and I was also inspired by the fact that this was a newly emerging field of research in the discipline of virology at the time, and of course in my master’s research there were some gaps and limitations which needed to be addressed. I then took a decision to pursue a PhD and expand on that research, and working with new-born babies is always enjoyable,” says Dr Mogotsi. 

With his thesis titled “Longitudinal characterisation of the enteric virome of infants from the Free State, South Africa, using viral metagenomics”, Dr Mogotsi’s research aimed to characterise the total assemblage of all viruses that colonise the gastrointestinal tract of newborns, often referred to as the gut virome, using metagenomics.

“We know that the human gut undergoes some changes as the new-born baby becomes exposed to the numerous microorganisms, such as viruses, from the immediate environment. This once-in-a-lifetime occurrence can have life-long effects on the health and disease state of humans. Viral intestinal infections are among the leading causes of childhood hospitalisations and deaths, especially in Africa, and infants are at a greater risk of suffering severe illnesses due to their immature immune system,” he explains.

According to him, previous research had focused more on the investigating the population of bacteria present in the gut of new-borns, therefore, there’s a huge knowledge gap about viruses colonising this part of the human body. In South Africa, more attention has been on assessing the effectiveness of currently available vaccines and surveillance of specific disease-causing viruses such as rotavirus.

The research he was conducting, he continues, therefore, sought to characterise all intestinal viruses in healthy new-borns individuals, their source of origin, the changes in diversity and composition occurring over time, as well as their potential implications on the health of infants. “The findings of my study have provided more insights into what is known or new viruses are colonising the infants’ gut, as well as their evolution over time”, he adds.

PhD journey

Even though he had to put his PhD on hold for a year due to COVID-19, but with the resilience, persistence, and his ability to clear the roadblocks that were in his way, he managed to complete it. He also credits his supportive mentors and a community of colleagues and friends for their unwavering support throughout his academic journey.

“After a year-long delay, I was able to go ahead with the project and everything went well from sample collection and sample processing in the lab. The challenging part was analysing and interpreting the data as this involved advanced bioinformatics, but in the end, I was able to find solutions and make sense out of the results I got. The study was a great success with two publications in peer-reviewed international journals emanating from this study.

“Furthermore, I had an opportunity to present my research in local and international conferences. I have been to Ghana, Nigeria and Indonesia. Locally, I presented in a conference in Johannesburg and in Cape Town. More exciting was participating in the Three Minute Thesis (3MT) competition in which I emerged victorious, winning the National 3MT competition. The other award I received was from the Faculty of Health Sciences Research Forum, winning the Dr Lehlohonolo Mathengtheng Trophy for best PhD presentation”, says Dr Mogotsi.

Motivation

Dr Mogotsi says the fact that he comes from the township and received his secondary education from a township school always kept him motivated. He is well aware that there are many who look up to him, who are also inspired by what he has achieved.

“More importantly, my supervisor, Prof Nyaga, was very supportive and he is very active in his research field with genuine interest in student projects, while making time to provide adequate supervision and mentorship. His high standards of ensuring that students graduate with a strong publication record is commendable.”

As a coordinator of wet lab activities at the UFS-NGS Unit, Dr Mogotsi is currently involved in several projects as the unit is a World Health Organisation Collaborating Center for Vaccine Preventable Diseases and Pathogen Genomics. They are doing collaborative projects with several partners across the continent on the genomic surveillance of enteric viruses such as rotavirus, norovirus, sapovirus, astrovirus and adenoviruses. 

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept