Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 September 2024 | Story André Damons | Photo Supplied
Dr Puseletso Mofokeng
Dr Julia Puseletso Mofokeng, from the UFS’s Department of Chemistry, is doing research into biodegradable polymers for application in disposable product packaging.

A researcher from the University of the Free State (UFS) is contributing to the fight against plastic pollution through her research into biodegradable polymers – large, chain-like molecules – as a more environmentally friendly alternative to petroleum-based plastics.

Plastic pollution is a global environmental problem, with 19 to 23 million tonnes of plastic waste leaked into aquatic ecosystems every year.

Dr Julia Puseletso Mofokeng, Senior Lecturer and Researcher in the UFS Department of Chemistry, hopes her research into how biodegradable polymers can be used in disposable product packaging can influence the industry and policymakers to enforce the use of biopolymers or biodegradable polymers in disposable products. This would help reduce plastic waste and boost environment-conservation efforts.

The United Nations Environment Programme (UNEP) describes plastic waste as a serious environmental problem – humans produce about 400 million tonnes of plastic waste every year. Approximately 36% of all plastics produced are used in packaging, including single-use plastic products for food and beverage containers, approximately 85% of which ends up in landfills or as unregulated waste.

Researching biodegradable polymers

Dr Mofokeng’s desire to solve the waste problem in her community of Bophelong village in Qwaqwa, Free State – where community members dumped and burned all sorts of waste, including plastics – inspired her towards her field of research.

Today, her research is aimed at managing plastic waste to combat environmental and atmospheric pollution (from incineration), conserve energy, and improve water quality, including ensuring safe drinking water.

High levels of plastic waste have led to increased research into and development of biodegradable polymers as an alternative to non-biodegradable materials for short-shelf-life goods (such as packaging for fresh fruit and vegetables).

Biopolymers or biodegradable polymers, explains Dr Mofokeng, are derived from renewable resources including, but not limited to, vegetable oils, starches and animal fats. They can therefore be easily disposed of after use without harming the environment.

“My research is based on the preparation and characterisation of completely biodegradable polymers, their blends, and composites or nanocomposites filled with unmodified or modified inorganic fillers, natural fibres, as well as synthesised carbonaceous materials,” she says.

Such materials are developed for various applications, including packaging, electromagnetic interference shielding (blocking unwanted signals), and the removal of heavy metals and other contaminants from water bodies. 

“To achieve these aims, I and my small research group are preparing completely biodegradable polymer blends.”

This involves adjusting their morphology (structure) and some of their properties (thermal, thermomechanical, mechanical, and flame retardancy) to match those of petroleum-based polymers in their replacement for disposable products; by reinforcing with natural fibres, and minerals.

Biodegradable polymers can degrade within a few days to a few years depending on their source, type, and biodegradation method used, while petroleum-based polymers can exist for hundreds to thousands of years without degrading. Moreover, because biodegradable polymers are produced from natural resources, their biodegradation mainly produces carbon dioxide, water, and other non-toxic byproducts, Dr Mofokeng adds.

“Biodegradable polymers can degrade by themselves under natural environmental conditions – in one to three years – or may require human intervention to degrade where composts are prepared or conditions are controlled in order to degrade the polymers. The latter two being the fastest, where it could take days to months. In my previous research project [we] kept polylactic acid filled with short sisal fibre in plain water at 80℃, and all the tested samples degraded within 10 days.”

She and a PhD student are conducting an ongoing experiment involving three different biodegradable polymer systems exposed to different conditions outside and under soil, measuring the rate of biodegradation by mimicking the environmental conditions found in dumping sites and landfills.

Signs of biodegradation on the samples showed clearly after 14 months, with cracks, surface erosion, and a decrease in the initial weighed mass, suggesting that the polymers could be completely degraded within two to three years.

Closer to goal

Dr Mofokeng, who has been a National Research Foundation (NRF) Y2-rated researcher since 2021, says since most food outlets and restaurants in South Africa have already started using paper- and bio-based polymer materials in cutlery, straws, and takeaway packaging, the country seems to be closer to its goal of using biodegradable polymers for disposable packaging.

The UFS, too, is aiming to phase out the use of plastic bottles in the next three to five years. This will be done by installing filtered water machines in all its buildings.

“We are now left with policymakers to enforce strict laws governing production; and retail industries to use biopolymers or biodegradable polymers in disposable packaging materials,” she says.

New research

Dr Mofokeng and her group’s research is in line with the United Nations’ Sustainable Development Goals (SDGs), including ensuring good health and wellbeing (SDG3), providing clean water and sanitation (SDG6), forging sustainable cities and communities (SDG11), establishing sustainable consumption and production patterns (SDG12), and protecting life below water (SDG14).

She has been researching polymers for almost two decades, and remains passionate about her research field and educating communities. Her new research project, in collaboration with colleagues from her department, targets the removal of heavy metals and other contaminants from groundwater. Testing and water treatment is set to take place in different regions in Qwaqwa, specifically among households that collect drinking and cooking water from boreholes.

Dr Mofokeng’s research group was established in 2016 with one honours and two master’s students. She has since supervised nine honours, seven master’s and one PhD student.

She also recently established international research collaborations with the Libyan Advanced Center for Chemical Analysis and the Faculty of Technology at the University of Banja Luka in Serbia.

News Archive

Multi-disciplinary research approach at UFS
2005-10-25

UFS follows multi-disciplinary research approach with opening of new centre 

“A new way of doing business in necessary in the research and teaching of agriculture and natural sciences in South Africa.  We must move away from  departmentalised research infrastructures and a multi-disciplinary approach to research involving several disciplines must be adapted,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS).   

Prof van Schalkwyk delivered the keynote address during the launch of the Centre for Plant Health Management (CePHMa) at the Main Campus in Bloemfontein today (21 October 2005).  CePHMa is an initiative of the UFS Department of Plant Sciences.

According to Prof van Schalkwyk a tertiary institution must practice multi-disciplinary research to be a world-class research institution.  “It is difficult for researchers to admit that they do not know a lot about each other’s area of speciality.  It is therefore necessary for researchers to make a paradigm shift and to focus on inter-disciplinary co-operation.  To do this, we must encourage them to work together and to find a common language to communicate ideas en establish symbiotic relationships,” said Prof Van Schalkwyk.

“We tend to think that research is better and faster if it is specialised.  This is not true.  The new generation of scientists are young and they are trained to form a concept of the total system and not to focus on a specific area of speciality.  At the UFS we encourage this approach to research.  This was one of the main reasons for the establishment of CePHMa,” said Prof Van Schalkwyk.
CePHMa is the only centre of its kind in Africa and is established to extend the expertise in plant health management in South Africa and in Africa, to train experts in plant health and to conduct multi-disciplinary research about the health of agricultural crops.  

“CePHMa is a virtual centre comprising of ten disciplines applicable to crop production and crop protection,” said Prof Wijnand Swart, Chairperson of CePHMa during the opening ceremony.

“The UFS is the leading institution in Africa in terms of news crop development and manages three research programmes that concentrate on new crops, i.e. the New Crop Pathology Programme, the New Crop Development Programme and the Insects on New Crops Programme.  Other applied research programmes that are unique to the UFS are genetic resistance to rust diseases of small grain crops and sustainable integrated disease management of field crops,” said Prof Swart.

“Because the expected growth in population will be 80% in 2020 in sub-Saharan Africa, the future demands of food produce in Africa will be influenced.  Therefore research will in future be focused on ways to improve food security by employing  agricultural systems that are economically viable and environmentally sound,” said Prof Swart.

“Thorough knowledge of the concept of holistic plant health management is crucial to meet the challenge and it is therefore imperative that innovative crop protection and crop production strategies, with particular emphasis on plant health, be adopted.  This is why the Department of Plant Sciences initiated the establishment of CePHMA,” he said.

According to Prof Swart there is a shortage of expertise in plant health management.  “The UFS has shown the potential to address the demand of the sub-continent of Africa regarding expertise training and CePHMa is the leader in southern Africa to provide in this need,” he said.

The appropriateness and quality of training in plant health management is reflected in the fact that students from Ethiopia, Eritrea, Malawi, Uganda, Zambia, Ghana, Tanzania, Cameroon, Angola, Mozambique and Lesotho have already been trained or are in the process of being trained in at the UFS.

Scientists from CePHMa have forged partnerships with numerous national and international institutions including the Agricultural Research Council (ARC), various community trusts, seed, pesticide and agricultural chemical companies, in addition to overseas universities. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
21 October 2005

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept