Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 December 2024 Photo Supplied
Dr Solomon Chibaya
Dr Solomon Chibaya, lecturer in the Department of Education Management, Policy, and Comparative Education, University of the Free State.

Opinion article by Dr Solomon Chibaya, lecturer in the Department of Education Management, Policy, and Comparative Education, University of the Free State.


Friday 13 December 2024 marks a crucial moment in South African education law. All stakeholders are awaiting the decision regarding implementation of the contentious sections 4 and 5 of the Basic Education Amendment Bill. After President Cyril Ramaphosa signed the Bill into law, he delayed implementation of the sections on language and admission policies for three months. This was meant to allow for consultation on proposals for resolving the conflicts around the contested sections.

The main issue around the language and admission policies is that the Bela Act allows the provincial heads of departments to have the final say on these policies after the school governing bodies (SGBs) have developed them. Some SGBs see this as their powers being usurped, which contradicts the democratisation of school governance. However, cases in which the powers of SGBs have been abused in ways that led to exclusionary language and admission policies presents the need for oversight of these critical school policies.

Friday 13 December 2024 is the deadline for the resolution.

One cannot avoid thinking about the implications of the different possible outcomes of the decision beyond 13 December. The president could approve the Act without any changes, or clauses 4 and 5 could be returned to the National Assembly for reworking.

If approved

If the Act is to be approved with the two contentious clauses in their current form, there will be a barrage of court cases from opponents of the decision. Over the past few months preceding the signing of the Bela Bill and after it was signed on 13 September 2024, the DA, AfriForum and other lobby groups have promised to take the matter to court. In such a scenario, all parties must prepare themselves for long, vicious and contentious court battles that have enormous implications for the political context defined by the Government of National Unity (GNU).

What will add further fuel to the fire is that at the helm of the department in which the Act is being debated is a DA minister, Minister Siviwe Gwarube. Will she toe the line and follow the law as expected by her office? Or will she follow the direction of her political party, which has been clear about how much it abhors the Act, especially in relation to its current form? She could find herself in the firing line.

If approved in its current form, beyond 13 December 2024, the Act will appease proponents who have been clear about their support for it. Proponents of the Bela Act, such as the ANC (which has been campaigning for it to be embraced by all), SADTU (which on countless matches in support of the Act and have even threatened the president with litigation if they do not get their way), and other political parties like the EFF and the MK Party will be vilified. Considering this, the country’s polarisation is apparent and is a potential and real threat to the GNU/coalition.

If sent back

The DA, AfriForum, and other lobby groups, especially those who want clauses 4 and 5 overhauled, will celebrate, but only for a moment. At least they can battle against the Act’s current form in the National Assembly. Rather than the rigour and expenses surrounding litigation, the different sides must now use their different lawmakers to make a case for them.

The results from the last votes on the BELAB held on 16 May 2024 showed that 223 votes were in favour of and 78 votes against the bill. If these results are anything to go by, there is little change the National Assembly would make to the Act. It will boil down to votes, and the scale will be lopsided. We will be heading for litigation and threats.

At the centre of this is the child whose best interest we are supposed to looking out for. Beyond Friday 13 December 2024, our focus will move away from the child to the National Assembly, the courtrooms, the never-say-no law firms. All eyes will be on the political space. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept