Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 January 2024 Photo SUPPLIED
Prof Anthony Turton
Prof Anthony Turton is a water expert from the Centre for Environmental Management at the University of the Free State.

Opinion article by Prof Anthony Turton, Centre for Environmental Management, University of the Free State. 


South Africa and Australia, both arid countries with historical ties to the British Empire, face significant water management challenges. Despite common legal and parliamentary systems, the two nations diverge in their approaches to water sector governance, leading to markedly different outcomes in economic prosperity.

In examining the disparities, it becomes evident that contemporary South Africa is grappling with a scenario resembling a failed state, particularly evident in the breakdown of the electricity and water services sector. This raises a fundamental question – why is the South African water sector faltering while its Australian counterpart thrives? 

Why is the South African water sector collapsing?

Addressing the collapse of the South African water sector requires a nuanced understanding rooted in historical context. The origins of the issue can be traced back to the British Empire’s consideration of federalism during the Anglo-Zulu War. While federalism found success in Canada and Australia, it failed to take root in South Africa.

Fast forward to the present, South Africa operates as a unitary state with a centralised water policy and national water law. This uniform approach leaves little room for local variation, resulting in a cookie-cutter model applied nationwide. Despite water being a constitutional right and given that free basic water is guaranteed to all, the sector faces challenges such as high levels of unaccounted-for water, leakages, and poor management. The absence of justiciable water rights and the separation of water from land ownership hinder private sector involvement. Consequently, utilities are reliant on government bailouts, a situation exacerbated by failing water and electricity grids, diminishing the tax base, and escalating unemployment. 

Australia’s flourishing water sector: A model of innovation 

Australia’s federal structure facilitates a diverse array of state policies and laws, promoting adaptability to local conditions. Boasting over 30 distinct water authorities, each tailored to meet local needs, Australia thrives on a justiciable water right system that allows private ownership. Market forces drive water to its most productive use, and investor confidence is a cornerstone in decision-making. 

Australia’s innovative and market-oriented approach has resulted in well-managed utilities with robust balance sheets. The ability to raise capital from the bond market reduces reliance on public funds for bailouts. Groundwater plays a vital role, accounting for around 40% of the total resource, while innovative technologies, such as seawater desalination, are embraced at the utility scale.   

South Africa’s water sector: uninvestable and facing challenges 

Contrastingly, South Africa’s water sector faces challenges. A lack of innovative approaches, coupled with a rigid, cookie-cutter methodology has stifled local imagination. The state’s hostility towards private capital has rendered the water sector generally uninvestable. While some large water boards still maintain strong balance sheets, the growing debt burden from non-payment by municipalities poses a threat. Limited development of groundwater at utility scale, coupled with a reluctance to replicate successful initiatives, further compounds the challenges. Sea water desalination, where it exists, is confined to small package plants in distressed municipalities along the coast, often seen as unsustainable. 

Australia’s innovative solutions: integrating technology and conservation

Australia stands out for its innovative solutions. With a vibrant private sector driving constant technological advancements, groundwater is a key element in most utilities, actively integrated into the grid and accounting for around 40% of the total resource. Building codes align with water conservation, ensuring rainwater harvesting and aquifer recharge are actively pursued at various levels, including suburb and city. The management of sewage, increasingly sophisticated water recovery from waste, and seawater desalination at utility scale funded by private capital showcase Australia’s forward-thinking approach.  

Centralisation versus decentralisation  

In conclusion, the weakness of South Africa’s water sector lies in the highly centralised approach, resulting in ineffective, one-size-fits-all solutions. Local authorities often lack imagination, relying heavily on taxpayers and hindering innovation. Suspicion towards capital and technology further limits the sectors development. In contrast, Australia’s decentralised approach fosters vibrant water utilities capable of attracting both capital and technology. Entrepreneurs’ initiatives in desalination and water recovery programmes inspire investor confidence, leading to capital influx and secure, water-efficient local economies.

News Archive

Research into veld fires in grassland can now help with scientifically-grounded evidence
2015-04-10

While cattle and game farmers are rejoicing in the recent rains which large areas of the country received in the past growing season, an expert from the University of the Free State’s Department of Animal, Wildlife, and Grassland Sciences, says that much of the highly inflammable material now available could lead to large-scale veld fires this coming winter.

Prof Hennie Snyman, professor and  researcher in the Department of Animal, Wildlife, and Grassland Sciences, warns that cattle and game farmers should be aware, in good time, of this problem which is about to rear its head. He proposes that farmers must burn firebreaks as a precaution.

At present, Prof Snyman focuses his research on the impact of fire and burning on the functioning of the grassland ecosystem, especially in the drier grassland regions.

He says the impact of fire on the functioning of ecosystems in the ‘sour’ grassland areas of Southern Africa (which includes Kwazulu-Natal, Limpopo, Mpumalanga, the Eastern Cape, and the Harrismith environs) is already well established, but less information  is available for ‘sweet’ semi-arid grassland areas. According to Prof Snyman, there is no reason to burn grassland in this semi-arid area. Grazing by animals can be effectively used because of the high quality material without having to burn it off. In the sourer pasturage, fire may well form part of the functioning of the grassland ecosystem in view of the fact that a quality problem might develop after which the grass must rejuvenate by letting it burn.

Prof Snyman, who has already been busy with the research for ten years, says quantified data on the impact of fire on the soil and plants were not available previously for the semi-arid grassland areas. Fires start frequently because of lightning, carelessness, freak accidents, or damaged power lines, and farmers must be recompensed for this damage.

The shortage of proper research on the impact of fires on soil and plants has led to burnt areas not being withdrawn from grazing for long enough. The lack of information has also led to farmers, who have lost grazing to fires, not being compensated fairly or even being over-compensated.

“When above-and below-ground plant production, together with efficient water usage, is taken into account, burnt grassland requires at least two full growing seasons to recover completely.”       

Prof Snyman says farmers frequently make the mistake of allowing animals to graze on burnt grassland as soon as it begins to sprout, causing considerable damage to the plants.

“Plant roots are more sensitive to fire than the above-ground plant material. This is the reason why seasonal above-ground production losses from fire in the first growing season after the fire can amount to half of the unburnt veld. The ecosystem must first recover completely in order to be productive and sustainable again for the long term. The faster burnt veld is grazed again, the longer the ecosystem takes to recover completely, lengthening the problem with fodder shortages further.  

Prof Snyman feels that fire as a management tool in semi-arid grassland is questionable if there is no specific purpose for it, as it can increase ecological and financial risk management in the short term.

Prof Snyman says more research is needed to quantify the impact of runaway fires on both grassland plant productivity and soil properties in terms of different seasonal climatic variations.

“The current information may already serve as valuable guidelines regarding claims arising from unforeseen fires, which often amount to thousands of rand, and are sometimes based on unscientific evidence.”

Prof Snyman’s research findings have been used successfully as guidelines for compensation aspects in several court cases.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept