Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 March 2024 Photo Lunga Luthuli
Simphiwe Kunene and Prof Francois Strydom
Prof Francois Strydom, Senior Director at the Centre for Teaching and Learning and Simphiwe Kunene, the first African DREAM scholar and a master’s student from the Faculty of Education.

The University of the Free State (UFS) received recognition for its commitment to student success at the 2024 Achieving the Dream (ATD) conference which celebrated its 20-year anniversary. Simphiwe Kunene, an Education master's student originally from the Qwaqwa campus, was selected to represent South Africa as the first DREAM scholar from Africa as part of the conference.

The Achieving the Dream network of over 300 institutions, which is one of the largest movements in US higher education aims to transform colleges and universities so that students of colour and a lower socio-economic status are supported to earn a degree. The UFS is a leading partner in the Siyaphumelela Network, which has been working for 10 years with ATD to enhance the success of students in South Africa. Prof Francois Strydom, Senior Director at the Centre of Teaching and Learning (CTL), accepted the award on behalf of the institution.

Prof Strydom said that collaboration with the ATD and Siyaphumelela institutions has helped the UFS to develop cutting-edge approaches to “level the playing field” and support Kovsies to earn their undergraduate degrees.

The first African DREAM scholar

Kunene was selected as the first African DREAM scholar from the Siyaphumelela network. To select the DREAM scholar, each Siyaphumelela partner institution nominated one student as a preferred candidate. From the proposed candidates, the DREAM scholar was selected by the South African Institute for Distance Education (Saide) based on the following: demonstrating resilience, academic excellence, and a deep commitment to making a positive difference in universities and personal communities.

He addressed the conference of over 2 000 delegates and shared with them his hopes and dreams. Many members of the South African delegation said Simphiwe did his country proud. He had the following to say about his opportunity to be a DREAM scholar: “Being a DREAM scholar was life changing for me, exposing me to an array of opportunities I never knew were possible and available for me. It was as if, for a moment, the world had stopped to just listen to what I had to say."

The way forward

The UFS will continue its work as a partner of the Siyaphumelela network for the 2024-2026 cycle. The multi-stakeholder project team is focused on enhancing undergraduate students’ time, and to position the UFS as a thought and research leader in the area of student success as part of Vision 130.  

News Archive

Einstein's gravitational waves as creative as Bach's music, says UFS physicist
2016-02-19

Description: Gravitational waves  Tags: Gravitational waves

Profile of the gravitational waves of the colliding black holes.

Prof Pieter Meintjes, Affiliated Researcher in the Department of Physics at the University of the Free State, welcomed the work done by the Laser Interferometer Gravitational-Wave Observatory (LIGO) science team.
 
For the first time, researchers from two of the American Ligo centres, in Washington and Louisiana respectively, observed gravitational waves directly, 100 years after Albert Einstein said they existed. "My study field in astrophysics involves relativistic systems. Therefore, Einstein's view of gravity is crucial to me. I consider the theory as the highest form of human creativity - just like the music of JS Bach. Over the past 100 years, the theory has been tested through various experiments and in different ways.
 
“The discovery of gravitational waves was the last hurdle to overcome in making this absolutely unfaltering. I am therefore thrilled by the discovery. It is absolutely astounding to imagine that the equations used to make the predictions about the gravitational-wave emissions when two gravitational whirlpools collide - as discovered on 14 September 2015 by LIGO - are basically Einstein's original equations that were published way back in 1916 - in other words, 100 years ago.
 
“The LIGO detectors have been operational since the early 1990s, but they had to undergo several stages of upgrades before being sensitive enough to make detections. LIGO is currently in its final stage, and is expected to function at optimal sensitivity only within a year or two. To be able to conduct the measurements at this stage is therefore a fantastic achievement, since much more funding will certainly be deposited in the project,” Prof Meintjes says.

Description: Prof Pieter Meintjes Tags: Prof Pieter Meintjes

Prof Pieter Meintjes
Photo: Charl Devenish

The search for gravitational waves by means of the Square Kilometre Array (SKA) is one of the focus points in research by both Prof Meintjes and PhD student, Jacques Maritz. This involves the study of radio signals from pulsars that might show signs of effects by gravitational waves. They are looking for signs of gravitational waves. The gravitational waves discovered and studied in this manner would naturally vary much more slowly than the signal discovered from the two colliding gravitational waves.
 
The discovery will definitely provide renewed impetus to the Square Kilometre Array (SKA) Project to use the dispersion of pulsar signals, and to search for the impact of gravitational waves on signals as they travel through the universe. According to Prof Meintjes, the SKA will definitely contribute fundamentally to the Frontier research, which will provide a good deal of publicity for the UFS and South Africa, if significant contributions are made by local researchers in this field.

Video clip explaining gravitational waves

 

  • The Department of Physics will present a general, non-technical talk concerning the recent detection of gravitational waves by the 2 Laser Interferometer Gravitational Wave Observatories (LIGO):

Wednesday 24 February 2016
11:00-12:00
New lecture auditorium, Department of Physics

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept