Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 September 2024 | Story Lunga Luthuli | Photo Supplied
2024 - 2025 CSRC elections
The UFS’s recent pioneering of live election results during the 2024/2025 CSRC elections drove unprecedented student engagement.

The University of the Free State (UFS) has proven its commitment to innovation and student engagement with the recent 2024/2025 Campus Student Representative Council (CSRC) elections, which were held online and featured real-time results projection across all three campuses. The elections, held from 20 to 22 August 2024, marked a significant milestone for the institution, setting a precedent in the national higher education landscape.

Dr Grey Magaiza, Chairperson of the UFS Elections Logistics Committee (ELC), provided insight into the planning process that went into making the elections a success: “Planning for an institutional CSRC election is a very demanding process,” he explained. “Multiple stakeholders have to be appraised of the project, as it has multiple implications for the institution. The voting is the last phase in a long list of actions that a capable team must support.”

One of the most notable aspects of this year’s elections was the introduction of real-time results, a first for any institution in South Africa. Despite the challenges that came with being pioneers in this area, the ELC managed to overcome them through rigorous scenario planning and extensive negotiations. “This is a huge milestone, but it did not come without its own challenges,” Dr Magaiza said. “We had to engage in multiple negotiations with numerous process owners. The debates that ensued only sharpened our ability to observe potential blind spots.”

Students embrace live voting

The transition from traditional online voting to a system with live results was met with enthusiasm by the student body. “Students have always been for online elections. The majority of students we talked to loved the live results format,” Dr Magaiza said. The decision to share the live results link with the entire student body, despite initial requests for it to be limited to party agents, was particularly well-received, further enhancing transparency and engagement.

Security and accuracy were also top priorities for the ELC, with advanced IT processes in place to ensure a seamless voting experience. Each student was provided with a unique one-time PIN (OTP) sent to both their UFS email and cellphone, and the system was designed to cater to the specific needs of each campus.

The live results projection, which updated every five minutes, not only drove massive voter turnout across all campuses but also fostered a more dynamic and engaging election atmosphere. “The turnout was massive across all three campuses, surpassing the previous year’s figures,” Dr Magaiza said.

Reflecting on the success of the elections, Dr Magaiza emphasised the importance of collaboration and preparation. He also expressed confidence that the UFS model could serve as an example for other institutions in South Africa. “Live results enhance transparency and acceptance of the election results. As UFS, we have not had a single objection with regards to the first-past-the-post election results,” he concluded.

The 2024/2025 CSRC Elections at the UFS have not only set a new standard within the university, but have also highlighted the potential for innovation in student governance across the country.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept