Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 April 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Palesa Mohajane
Dr Palesa Mohajane, scientist production at the Department of Water and Sanitation, received her PhD from the UFS for her research on the impact of pandemic-related burials on groundwater quality.

Dr Palesa Mohajane, a scientist production at the Department of Water and Sanitation in Hartbeespoort, was recently awarded her doctoral degree at the University of the Free State’s (UFS) autumn graduation ceremony. Her thesis, titled Modelling the effect of pandemic-induced burials on groundwater contamination: a hydrogeological and epidemiological assessment, looks at the impact of increased burial rates on groundwater quality.

 

Safeguarding groundwater resources

Dr Mohajane explains that witnessing the dramatic rise in burial rates during the COVID-19 pandemic – including instances of mass burials – and the resulting strain on cemeteries, raised concerns about the potential risk of groundwater contamination. This became a motivator for her research.

Her study bridges the gap between environmental science and epidemiology, developing tools to predict how disease outbreaks and related deaths can impact groundwater systems. “By focusing on this intersection, the study contributes knowledge that informs not only responsible cemetery management, but also the protection of groundwater resources important to public health,” she says.

Dr Mohajane highlights the environmental risks that come with an increase in burial activity during pandemics. “When death rates rise sharply, cemeteries experience a surge in burials, which accelerates decomposition within confined spaces. As bodies decompose, they release organic and inorganic pollutants, which can seep through geological layers and affect groundwater quality.”

She notes that if cemeteries are established without proper hydrogeological assessments, these substances can infiltrate the soil and contaminate water sources, posing a threat to both environmental and human health.

 

Using advanced tools to predict groundwater pollution

Dr Mohajane conducted her research during the post-pandemic period when the longer-term environmental effects of COVID-19-related burial practices began to surface. “Groundwater sampling and quality testing were conducted between September 2023 and January 2024. This period provided a suitable time frame to monitor contaminant release and assess the hydrochemical effects of the burial practices,” she explains.

Langberg Cemetery was selected as a case study due to its representative geological and human-made characteristics, making it a strong candidate for validating the research models. “This site allowed for real-world testing of the mathematical models and simulations, offering important insights into how contaminants move through soil and rock layers and impact groundwater,” says Dr Mohajane.

Her findings revealed that groundwater contamination is influenced by multiple interacting factors – including burial depth, body mass, and geological features. She explains that shallower burials allow pollutants to reach the water table more rapidly, while deeper burials may delay but not prevent eventual leaching. Larger body masses produce more decomposing material, increasing the number of pollutants released. Geological conditions such as fractures and varied rock formations also play a role in the spread of contaminants.

Dr Mohajane’s work has serious implications for both public health and water sustainability. The presence of elevated levels of total dissolved solids, electrical conductivity, specific ions, alkalinity, and mineralisation indicates potential health hazards. As groundwater is an important source of drinking water, she stresses the urgency of addressing these risks. “We need to use advanced tools to predict and prevent groundwater pollution before it occurs. With proper water management systems, we can reduce the environmental impact of pandemics,” she says.

She also emphasises the importance of continuous monitoring to detect pollutant levels that exceed safety limits. “Improving burial practices – including thorough geological assessments before establishing cemeteries and optimising burial depths – can help reduce contaminant migration. These measures are important to protect community water resources,” she adds.

 

Measures to protect groundwater and public health

Dr Mohajane’s research proposes a range of practical measures to safeguard groundwater and public health. Cemeteries should only be developed after detailed geological evaluations, and clear regulations must guide cemetery design to manage increased burial needs during pandemics. Regular water quality monitoring using modern detection tools is key, along with the inclusion of environmental assessments in public health planning.

“These policy measures, if adopted at both regional and national levels, can help to reduce the risk of groundwater pollution and support long-term public health,” she says.

Ultimately, this research supports South Africa’s efforts to protect its groundwater by encouraging collaboration between scientists and policy makers. It offers predictive tools, evidence-based guidelines for sustainable cemetery management, and highlights how scientific research can shape practical, effective policies. The goal is to ensure that groundwater remains a safe and secure resource during future public health and environmental crises.

News Archive

Shimlas now second on Varsity Cup log
2015-02-25

After scoring nine tries to none to establish a 57-0 win over the Central University of Technology’s (CUT) Ixias in round three of the 2015 Varsity Cup Rugby Tournament, the UFS Shimlas are now second on the overall log.

Despite thunder showers in Bloemfontein on the evening of Monday 23 February, the match at the CUT Rugby Stadium continued. Shimlas’ Arthur Williams opened the scoreboard early with the first try of the evening, after getting his hands on a loose ball to break through the CUT defense line. Only four minutes later, Shimlas’ flank Gerhard Olivier scored another try. Both of these tries were successfully converted by Niel Marais, putting Shimlas in a 16-0 lead within less than seven minutes.

By halftime, the Shimlas’ lead had increased to 39-0. Daniel Maartens started the second-half scoring for the UFS when he crossed the try line in the 46th minute to secure Shimlas’ seventh try. After another successful conversion kick by Marais, the scoreboard read 47-0.

The match began to lose its spark as handling errors and ill-discipline became the order of the day. CUT were reduced to 14 men for the second time in the match, when Boetie Makethlo was sent to the sin bin in the 75th minute for an infringement at the breakdown, inches away from his try line.

Maartens went over the try line again in the 78th minute, scoring Shimlas’ eighth try in the match and taking his team’s score beyond the 50 mark. Shimlas managed yet another try in the last minute, with Niell Jordaan diving over the try line for old time’s sake.

Although the Shimlas’ 2015 Varsity Cup started off with a 29-29 draw against the University of Pretoria’s Tuks in Bloemfontein, they returned the following week to clinch a 24-0 win against the University of Johannesburg at the UJ Stadium. Apart from Tuks, who is at this stage on top of the log, no team has scored against Shimlas thus far in the 2015 Varsity Cup.

Up next, Shimlas will face the Stellenbosch University’s Maties side at Shimla Park in Bloemfontein for round four of the tournament on Monday 2 March 2015.

Our Player that Rocks: Niell Jordaan

Shimlas’ point scorers:

Tries: Arthur Williams, Gerhard Olivier (2), Marco Klopper, Vuyani Maqina (2), Daniel Maartens (2), Niell Jordaan
Conversion kicks: Niel Marais 4

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept