Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 April 2025 | Story Anthony Mthembu | Photo Supplied
Kay-leigh van Rooyen
Kay-Leigh van Rooyen, Research Assistant at the University of the Free State (UFS), was one of sixteen individuals selected to participate in the 2024 Abe Bailey Travel Bursary.

As one of only sixteen recipients of the prestigious 2024 Abe Bailey Travel Bursary, Kay-Leigh van Rooyen, Research Assistant at the University of the Free State (UFS), recently returned from a life-changing journey across the United Kingdom. Representing the UFS on this esteemed programme, van Rooyen joined a cohort of emerging South African leaders in a transformative cultural and academic exchange. 

Reflecting on the experience, she described it as “nothing short of amazing.” 

“The experience was so much more than just visiting new places,” she said. “It was about engaging in meaningful conversations, forming lasting relationships, and gaining fresh perspectives on global issues.”

The Abe Bailey Travel Bursary aims to empower young South Africans through leadership development, cross-cultural exchange, and exposure to international dialogue. According to van Rooyen, this initiative was a powerful platform for personal growth, enabling her to see the world – and South Africa - through new lens.

“I learned the power of perspective - how others view our country, and how to understand global challenges from diverse vantage points,” she said. “I also realised that leadership is not about titles, but about influence and empathy.” 

 

A journey through the UK 

The bursary cohort convened in Cape Town on 23 November 2023 before departing for the UK, where they travelled from London to Edinburgh and back. The programme officially concluded on 18 December 2024/3. 

During the tour, the group visited iconic institutions such as the Royal Observatory in Greenwich, the British Library, the Francis Crick Institute, and the Houses of Parliament. For van Rooyen, the highlight was the opportunity to engage with thought leaders and changemakers. 

“One of the most memorable moments was having lunch in a chamber of the House of Lords at the Palace of Westminster with Lord Karan Bilimoria, the founder and chairman of Cobra Beer. The conversation was insightful and inspiring,” she said.  

 

A global stage for the UFS

Van Rooyen emphasised the professional impact of the experience, noting how it shaped her perspective on the role of academia in society. 

“This experience has changed the way I approach my work. I’ve developed a deeper appreciation for the importance of bridging the gap between academia and industry - especially how we can make research more practical and impactful,” she explained. 

She also highlighted the broader benefit for the UFS community. 

“Global engagements like these position the UFS as part of the international conversation. Our students and staff have valuable insights to share,  and we can learn so much from other institutions.” 

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation at the UFS and Chair of the university’s Abe Bailey Travel Bursary selection committee, echoed these sentiments. 

“The Travel Bursary so elegantly aligns with the vision and heart of the UFS - namely, to expose our students to a wider world and its global connections,” he said. 

 

Inspiring the next generation of UFS leaders 

Encouraging fellow UFS staff and students to apply for the bursary, van Rooyen emphasised the personal and professional rewards. 

“It challenges you to think critically, engage meaningfully, and build relationships with people you wouldn’t ordinarily meet,” she said. 

Prof Reddy praised van Rooyen for her achievements and representation of the UFS on a global stage.  

“Her experiences and insights demonstrate that she is an exceptional ambassador – not only as an Abe Bailey alumnus, but also as a symbol of the excellence the UFS strives for. We are extremely proud of Kay-Leigh and wish her well as we look forward to the great things that lie ahead for her.”

 

 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept