Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

OSM opening concert 2012
2012-03-02

 

The OSM Camerata is going to shine in the very first annual OSM opening concert.
1 March 2012


 

OSM opening concert 2012 with the OSM Camerata
Conductor: Nicholas Nikolaidis
Date: 1 March 2012
Venue: Odeion
Time: 19:30

The OSM opening concert 2012 with the OSM CAMERATA will be streamed live on the internet with the generous support of OSM partner, LA MUSE AUDIO & LIGHTING (www.ufs.ac.za/ufslivestreaming) in collaboration with the UFS LIVE STREAMING UNIT.

The OSM Camerata is going to shine in the very first annual OSM opening concert. The ensemble will be conducted by Nicholas Nikolaidis. The programme includes excerpts from Stabat Mater (Pergolesi), Romanian Folk Dances (Bartók), Pelimannit (Rautavaara), Elegy (Grové) and Purple Haze (Hendrix). since 2011, the Odeion School of Music has embarked on a new, innovative strategy striving towards uncompromising excellence and internationalisation, which includes the A-List scholarship programme and a new flagship chamber ensemble, the OSM Camerata. Talented South African, conductor/tenor Nicholas Nicolaidis, (runner-up in the First National Len van Zyl Orchestral Conducting Competition) will take the stage for the inaugural concert of the OSM.

Nicholas started his conducting career at an early age while still in the Drakensberg Boys’ Choir School. Professionally his first conducting post was as choirmaster and conductor of the choir and band at Pridwin Preparatory School (Melrose, Johannesburg) in 1996.

Following his appointment in April 1997 as the Musical Director of Côr Meibion Cymru de Affrig (The Welsh Male Voice Choir of South Africa), he conducted the choir for seven years, producing three albums. One of the highlights was the performance at the Royal Albert Hall in London in October 2000 for the Millennium Festival of Male Voice Choirs.

His orchestral conducting debut was in 1998 at the Johannesburg City Hall where he conducted the Johannesburg Festival Orchestra and the Symphony Choir of Johannesburg in a few items of ‘Last Night of the Proms’. Selected conducting performances include the Chanticleer Singers in a performance of Schubert’s Mass in G at the Holy Trinity Church (Braamfontein, Johannesburg) in 2002, and the Johannesburg Camerata, a chamber orchestra consisting of talented young performers, during their winter season in 2005.

In 2006, Nicholas enrolled at Stellenbosch University for a Master’s degree in Choral Conducting under the direction of the Norwegian pedagogue, Kåre Hanken. During this time, he also conducted the Johannesburg-based chamber choir, Collegium Vocale. He conducted the Johannesburg Chamber Wind Ensemble from 2006 to 2008.

In 2009, he conducted the Johannesburg Festival Orchestra in a programme of music by Leroy Anderson, the vocal ensemble, In Verse, and the Chanticleer Singers during their Christmas season. Nicholas was also the winner of the inaugural Young Choral Conductors Competition held during the Stellenbosch International Choral Conducting Symposium in March 2009.

In February 2010, he was awarded the Silver Medal in the inaugural Len van Zyl Conducting Competition held in conjunction with the Cape Philharmonic Orchestra. During the Easter period of 2010 he conducted Cantamus Corde in a performance of JS Bach’s St John’s Passion, whilst also singing the role of the Evangelist.

Nicholas has also appeared as guest conductor of the Philharmonia Choir of Cape Town in a concert with music by Ramirez and Klatzow. In that year he also conducted the gala Concert of the Brooklyn Theatre (Pretoria).

Refreshments will be on sale before and after the concert.

Admission:
R60 (adults)
R40 (pensioners, students and learners)
Tickets available at Computicket.

Enquiries:
Ninette Pretorius (Tel: +27(0)51 401 2504)


 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept