Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Fundraising campaign launched to help feed hungry students
2012-03-28

 

From the left is Dr. Carin Buys (Patron of NSH), Ms. Nicky Abdinor (guest speaker), Mrs. Grace Jansen (patron of NSH) and Redi Tlhabi (master of ceremonies).
Photo: Johan Roux
28 March 2012

Video clip (YouTube)

The University of the Free State (UFS) received over R200 000 for its No Student Hungry (NSH) Programme at the NSH launch dinner on Friday 23 March 2012 in Bloemfontein.

Prof. Jonathan Jansen, Vice-Chancellor and Rector of the UFS as well as founder of the NSH Programme donated R100 000 from the proceeds of his book We Need to Talk to this programme. Standard Bank also donated R30 000.

An additional amount of about R90 000 was raised by means of pledges made by guests and the auctioning of several items. These items were donated by local companies and university staff.

The No Student Hungry Programme (NSH) aims to raise funds to provide modest food bursaries for needy students and give them daily access to a balanced meal.
Prof. Jansen started the NSH programme in 2011 with the proceeds of his book, We Need to Talk.

The NSH funds more than 100 students in the hope of helping them to excel in their academic endeavours and, ultimately, to obtain their degrees.

In 2011, Prof. Jansen discovered that a significant number of students were studying without eating on a regular basis. These were often students with strong academic records but without adequate funding to sustain themselves with regular meals.

The project was established in January 2011 when the NSH Team started to develop the structure and processes of the programme. The first 100 students who were awarded the food bursaries started using their student cards for daily meals on campus on 1 April 2011.

“The No Student Hungry Campaign is not only about creating a university campus that cares. It is about creating a country where being human matters. Our students on the NSH project are amazing young people. They struggle to get by, but they have great potential and achieve good marks," Prof. Jansen said on Friday.

Prof. Jansen’s wife, Grace, and Dr Carin Buys, wife of Mr Rudi Buys, Dean of Student Affairs, volunteered to drive the programme and raise funds to address the problem. They are supported by various divisions within the university.

Students apply for the bursaries and are selected on the basis of their financial needs, good academic results, active participation in student life programmes and commitment to give something back to the community.

The raising of funds is a continuous process involving awareness campaigns, seeking of partnerships with companies and institutions and support from the general public, staff and individuals.

An agreement has been made with several food outlets/restaurants on campus who offer healthy, balanced meals to NSH students when they swipe their student cards that are funded by the programme.

At the end of the year the process is reviewed and students who still qualify are reinstated on the programme, whilst those whose circumstances have changed or are no longer in need of the bursaries, make way for new applications.

The NSH Team meets with students on a regular basis with the purpose of offering training, motivation and opportunities for personal growth and career development. Students are also expected to become involved in projects as a way of ploughing back into the community.

The goal is to expand the project annually as support for it grows.
Ms Nicky Abdinor, a clinical psychologist from Cape Town, who was born without arms and with shortened legs, provided an entertaining motivational speech at the launch. Ms Abdinor, founder of the Nicky's Drive organisation, also visited the UFS’ Unit for Students with disabilities where she delivered a talk on independence for people living with disabilities.

To become involved with the NSH Programme, please contact Mrs René Pelser on +27(0)51 4019087 or e-mail pelserr@ufs.ac.za.


Media Release
28 March 2012
Issued by: Lacea Loader
Director: Strategic Communication
Tel: +27(0)51 401 2584
Cell: +27(0)83 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept