Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Reitz colleagues start their own company
2014-07-01

The University of the Free State (UFS) and the five colleagues implicated in the Reitz incident of 2008 reached the final chapter in the reparation process in restoring the dignity of these colleagues on Thursday 19 June 2014.

Mr Mothibedi Molete and Mss Mankoe Naomi Phororo, Emmah Koko, Nkgapeng Adams and Sebuasengwe Mittah Ntlatseng, former cleaning staff at the UFS, are now the directors of their own cleaning company, Mamello Trading.

Furthering on its promise to assist the new-found company, the UFS has also appointed Mamello Trading as a service provider responsible for services at its South Campus.

It has been six years since the Reitz incident at the UFS and Dr Choice Makhetha, Vice-Rector: External Relations, described the journey of the past six years as a learning experience for all the stakeholders.

“This journey continues as there is still work to be done, but every milestone achieved, deserves a celebration like today’s,” Dr Makhetha said.

In 2010 the UFS signed a deed of settlement with the colleagues which committed the UFS to help them establish a cleaning company. This was followed by a reconciliation ceremony in 2011.

In 2012 the UFS assisted with the registration of the company Mamello Trading.

Dr Makhetha explained that in 2013 the UFS assisted in training the new directors and mentoring them for 12 months. 

Earlier this year, Mamello Trading signed a cleaning contract of four years with the UFS. Three of the directors’ daughters also received bursaries and are currently studying at the UFS.

Advocate Mohamed Ameermia, Commissioner at the Human Rights Commission, congratulated the management of the UFS on the reparation and reconciliation process they followed in restoring the dignity of the five colleagues.

The directors of Mamello Trading each had a special message of their journey and thanks. Their messages were as follows:

Rebecca Adams – After the video was exposed, I was hurt and was psychologically affected. By offering their apologies to us, the four students indicated that what they had done was a mistake. As a parent, when a child apologises you must accept that apology.
Emma Koko – I was shocked after the video was shown in public. I had a mother-child-like relationship with one of the students and that video tarnished my image as a human being. During the time of reconciliation these students showed remorse for what they had done.
David Molete – I was devastated, hurt and fearful to meet people. I ended up at a psychiatric hospital and attended counseling services which helped me to heal. The students apologised and I accepted because they were sincere.
Mittah Ntlaseng – The video impacted negatively on my dignity. The UFS assisted us with visits to psychologists. Now I feel I am a business owner and it is an opportunity for me to rebuild my self-esteem. 

Naomi Phororo – Mamello Trading is a business venture which is going to bring changes to our lives and families. The training I have received has enabled me to know how to manage the business.

 

Issued by: Lacea Loader (Director: Communication and Brand Management)
Telephone: +27(0)51 401 2584
Fax: +27(0)51 444 6393
E-mail: news@ufs.ac.za

  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept