Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story University of the Free State | Photo Supplied
Dr Hossein Naghizadeh and Refilwe Lediga
Collaborative innovation in action: Researchers from the University of the Free State’s Green Concrete Lab have partnered with the University of Johannesburg to advance 3D printing technologies using sustainable concrete materials. Pictured (from left): Dr Hossein Naghizadeh, Senior Lecturer in Engineering Sciences at UFS, and Refilwe Lediga, Concrete Printing Research Expert in the Department of Civil Engineering Technology at UJ.

In an ambitious and interdisciplinary effort to address today’s Grand Challenges, researchers at the University of the Free State (UFS) are exploring how nature’s oldest life forms – stromatolites – can inspire cutting-edge innovations in industrial ecology and marine conservation.  Drawing from biomimicry, 3D printing, and microbial engineering, their work showcases the convergence of ecological insight with modern technology. 

“One such example is replicating the structures of stromatolites – some of the earliest evidence of life - using green cement and 3D printing, the latest technology in industrial ecology,” explains Dr Jacques Maritz, Head of the Unit of Engineering Sciences at UFS. 

 

Ancient structures, modern science  

Stromatolites are layered microbial formations created by ancient cyanobacteria and date back over 3.5 billion years. These living fossils, found in fossil records and rare modern environments like Shark Bay in Australia, grow through a combination of photosynthesis, sediment trapping, and calcium carbonate precipitation. Not only do they support biodiversity, but they also play a vital role in natural carbon sequestration. 

UFS researchers are harnessing the lessons from these ancient formations to address urgent environmental challenges. In particular, Dr Yolandi Schoeman, Senior Lecturer at the Centre for Biogeochemistry, is leading efforts to cultivate hybrid stromatolites in controlled environments, using microbial consortia grown on 3D-printed scaffolds.  

“At UFS, we are reimagining stromatolite formation through both artificial structural replication and biological cultivation, bridging industrial ecology and microbial engineering to address modern environmental challenges,” says Dr Schoeman. 

 

Ecological engineering for reef restoration 

The rapid decline of marine biodiversity and the degradation of natural reef ecosystems have prompted ecological engineers to develop innovative solutions. At the UFS Green Concrete Lab, researchers are pioneering the design of artificial reefs using 3D-printed, low-carbon geopolymer concrete – a material formulated from industrial by-products such as fly ash and slag. 

Artificial reefs mimic natural reef complexity and serve as critical habitats for marine life, from fish and crustaceans to coral polyps and algae. Algae, in particular, are key to marine ecosystems due to their roles in nutrient cycling, oxygen production, and carbon capture. 

“Green concrete refers to concrete that utilises alternative binders and industrial by-products, significantly reducing the environmental footprint. At UFS, we are focusing on geopolymer concrete, which eliminates the high-energy processes associated with Portland cement, while offering greater chemical resistance - ideal for marine applications,” explains Dr Abdolhossein Naghizadeh from the Unit of Engineering Sciences. 

 

3D printing nature’s complexity 

One of the challenges in artificial reef development is replicating biologically inspired geometries that support diverse marine ecosystems. Traditional construction methods often fail in this regard, but additive manufacturing, or 3D concrete printing, is providing a solution.  

The UFS Green Concrete Lab, in collaboration with the University of Johannesburg, is developing reef modules with intricate geometries and natural surface textures. These features support coral and algae attachment, accelerate ecological colonisation, and enhance habitat functionality. Biochar-based compost filters are also being integrated to aid algae-driven wastewater treatment. 

A particularly novel avenue of research involves using 3D printing to recreate stromatolite structures. These serve as ancient blueprints for modern reef design, merging deep-time ecological understanding with advanced material science. 

 

Biologically engineered hybrid stromatolites  

In parallel to structural efforts, UFS is advancing biological approaches to stromatolite cultivation. From July 2025, researchers in the Unit of Engineering Sciences will initiate a large-scale experiment using microbial consortia in 60-litre tanks, scaling up to 1 m² hypersaline ponds. 3D-printed conical scaffolds, coated with materials such as PP-CaCO₃, hydroxyapatite, and silica gel, will accelerate microbial colonisation and lamination. 

The goal: to achieve stromatolite growth of 14-16 mm in just 28 days - over 150 times faster than in nature. These hybrid systems are expected to produce 7-8 mg/L/day of oxygen, sequester carbon at 3.2 g/m²/day, and remove up to 90% of nitrates and phosphates from water. The potential applications extend from terrestrial ecosystem restoration to extraterrestrial life-support systems. 

 

A multidisciplinary vision for sustainability 

This work exemplifies the strength of interdisciplinary research at UFS, combining civil engineering, mechatronics, marine ecology, chemistry, microbiology, and digital fabrication. The Ecological Engineering Sciences stream fosters a vibrant environment for postgraduate students to develop practical, impactful solutions.  

The Green Concrete Lab is central to these efforts, offering students and researchers access to advanced technologies and collaborative networks. Through their innovative work in 3D-printed green concrete and microbial systems, UFS researchers are addressing biodiversity loss, advancing sustainable construction, and contributing to the global climate agenda. 

“Whether it's rethinking materials, restoring ecosystems, or redefining what concrete can be, our research is laying the foundation for a better, more sustainable world beneath the waves,” concludes Dr Maritz. 

News Archive

Prof. Letticia Moja a winner in her category
2004-08-17

 

Prof. Moja a finalist in award 
'Every member of staff is important to me'

Michelle Cahill - Bloemnuus

IF you are in need of a dose of inspiration, try and get an appointment with Prof. Letticia Moja, the Dean of the Faculty of Health Science at the University of the Free State. It will not be easy as she has an extremely tight schedule, over and above being a finalist in the 2004 Shoprite/Checkers Woman of the Year competition.

 

Although not a born and bred Free Stater, this dynamic woman has come to love the Free State. "Once you get past the mindset of a small town and all the negatives surrounding it, it is an absolutely wonderful experience," Moja said.

Moja was born in Pretoria and grew up in Garankuwa as the second eldest of five children. "That was nothing special. I was not the eldest and I wasn't the youngest," she quipped. She had two younger brothers, one of whom died in a car accident and then two sisters.

She went to school in Pretoria and her first contact with the Free State was when she wrote her matric at Moroka High School in Thaba Nchu. "That was one of the best schools for us at that time," she says. After completing matric, she went on to study medicine in KwaZulu-Natal.

In 1982 she returned "home" and completed her internship at the Garankuwa Hospital. Hereafter she specialised in gynaecological obstetrics at Medunsa.

She became the head of the gynaecological obstetrics unit and later opened a branch in Pietersburg.

"This was just about the most heart-rending time of my life. You saw people travelling for up to three days just to see a doctor," she says. "Here we really interacted with the community."

In 2001 she was invited by the University of the Free State to apply for the job of vice-dean of the Faculty of Health Science. "I wasn't too keen," she says, "but they kept on calling to find out if I had applied or not," she says with a smile. "Eventually I gave in and was appointed."

She thought she would work a couple of years under Prof. Kerneels Nel, then the dean of the faculty. "Unfortunately that was not to be. I had hoped that I could learn from him," Moja says.

Prof. Nel died of a heart attack in 2003 after which Moja deputised for him before being appointed as dean.

"This brought along a whole newset of challenges," she says, "Now I have to work out budgets and I need to know what human resources are," she jokes. This has prompted her to take up her studies again and she is currently doing her MBA.

"It has certainly been a challenge to go into management and without my support structure I most certainly wouldn't have been able to do it," Moja says.

Moja is actively involved in her church and serves on various committees including the Health Professional Council where she is acting president of the Medical and Dental Board and the Provincial Aids Council.

To her no job is menial. She recalls when she used to have "high tea" with her staff in Gauteng and Limpopo. "One of the cleaning ladies used to think her job was menial. That is just not so. No hospital can do without even the lowest position. Imagine stepping over rubbish while you're trying to catch a baby. To me everybody is important no matter what you do. "

Moja's eldest daughter is studying for her B.Accounting degree at Wits . Her youngest daughter is in Gr. 9 at Eunice and she has also brought along her niece, who is in Gr. 8 at Eunice. "You see, we need to be three girls in the house."
She feels honoured to have been nominated by the institution especially as it is traditionally male-dominated. "It is not about me, but about the support structure. Nobody can do it on their own. It is a team effort."
BLOEMNUUS - VRYDAG 9 JULIE 2004

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept