Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 March 2025 | Story Andre Damons | Photo Andre Damons
Prof Aliza le Roux
Prof Aliza le Roux, Assistant Dean of the Faculty of Natural and Agricultural Sciences and Professor in the Department of Zoology and Entomology, at the Southern African Mountain Conference (SAMC2025).

Animals in mountainous areas around the world, in particular endangered, vulnerable, and near threatened mammals, are at risk of becoming roadkill as road networks expand further into these previously inaccessible terrains.

These mammals, which fall into the category of conservation risk according to the International Union for Conservation of Nature (IUCN) definitions, include African wild dogs (endangered), lions and leopards (both vulnerable), elephants (endangered), and honey badgers (NT – near threatened). Among the road-killed birds found in these areas are the hooded vulture (critically endangered) and the endangered steppe eagle.

This is according to Prof Aliza le Roux, Assistant Dean of the Faculty of Natural and Agricultural Sciences and Professor in the Department of Zoology and Entomology, who presented research during a session at the Southern African Mountain Conference (SAMC2025). Prof Le Roux, a behavioural ecologist studying how animals respond to risks and opportunities in the environment, did an oral presentation titled Patterns of wildlife-vehicle collision in montane environments during a session on Mountain biodiversity: animals.

The conference, under the patronage of UNESCO and organised by the University of the Free State (UFS) Afromontane Research Unit (ARU) – in partnership with the African Mountain Research Foundation (AMRF) and the Global Mountain Safeguard Research Programme (GLOMOS) – brought together researchers, policy makers, and practitioners from across Southern Africa and beyond. It delved into critical issues around mountain ecosystems, communities, governance, and transboundary cooperation.

For the research, Prof Le Roux, Dr Katlego Mashiane, Lecturer in the UFS Department of Geography, and Dr Clara Grilo from the BIOPOLIS project in Portugal, looked for published data/papers from 1971 to 2024, finding that most of the published literature on roadkill in Africa came from the 21st Century.

 

Heightens risks to wildlife

According to her, they found that amphibians were killed at the highest rate in the mountainous regions, while mammals were killed most frequently in the low-lying regions. Mammalian species classified as near threatened or more vulnerable to extinction on the IUCN Red List were most frequently found in the high-elevation mountains (7,7% of species killed in these areas), but also in low-lying areas (3,8% of mammalian roadkill). About 3% of the birds killed at moderate elevations were also of conservation concern.

“Increased vehicular traffic and better-paved roads in montane environments heighten the risks to wildlife inhabiting these regions, including the potential for more wildlife-vehicle collisions, leading to higher mortality rates. In terms of sheer numbers, many more small species (less than 1 kg in adult weight) are killed than larger species. This is probably because we either don’t see them or don’t care if we hit them. But we do care if our cars collide with something large like an eland – it does damage to us as well as them.”

“Unpredictable weather patterns and sudden topographical changes all contribute to these roads potentially being more hazardous for both drivers and any surrounding wildlife: the ruggedness of these terrains and tortuosity of roads can make it harder for drivers and wild animals to detect one another on mountain roads, increasing the likelihood of collisions,” writes Prof Le Roux and her colleagues.

The researchers estimated the roadkill rates for each observed species and then analysed the correlation with topographic aspects of the study sites. They used the 90m digital elevation model downloaded from the geospatial cloud-computing platform Google Earth Engine and classified ‘high’ elevation mountains as regions lying above 2 000 metres above sea level (masl), ‘moderate’ elevation mountains as lying between 1 500 and 2 000 masl, and ‘low’ regions as areas below 1 500 masl.

 

Limited data

Prof Le Roux and Dr Mashiane also extracted slope and the topographic ruggedness index. Roadkill rates were estimated for 15 different amphibian species, 98 reptilian, 261 avian, and 273 mammalian species, comprising 5 549 individual road kills.

“These findings indicate that roads in mountainous African regions pose a high risk to our indigenous wildlife. The accidents in mountainous areas are something to be aware of, as we are moving further into mountains where there is often vulnerable and unique biodiversity. When we do kill vertebrates through a collision, it is often a species that we would not find in low-lying areas.”

Unfortunately, Prof Le Roux says, they cannot say what the continental patterns are because so little data is available about biodiversity and roadkill patterns in the central and western parts of the continent. The data they found came from only 10 countries, and almost none of the studies took the form of systematic, longitudinal monitoring. The data sets were all ‘snapshots’ of roadkill in specific areas.

News Archive

UFS teams up with Department of Agriculture and donates latest farming technology to Oppermans
2009-03-09

 
Attending the recent launch of the latest technology that measures the salinity of soil – the EM38 system – during an information day held in Jacobsdal were, from the left, back: Mr Robert Dlomo, a farmer from Pietermaritzburg in KwaZulu-Natal, Prof. Leon van Rensburg, Department of Soil, Crop and Climate Sciences at the UFS, Mr Sugar Ramakarane, head of the Department of Agriculture in the Free State, Dr Motseki Hlatshwayo, national Department of Agriculture, and Prof. Herman van Schalkwyk, Dean of the Faculty of Natural and Agricultural Sciences at the UFS; front: Mr Robert Smith and Mr Fagan Scheepers from Oppermansgronde, who will be working with the EM38 system in the area.
Photo: Landbouweekblad
UFS teams up with Department of Agriculture and donates latest farming technology to Oppermans

Emerging and commercial farmers of the Oppermans Community in the Northern Cape will now be able to monitor the salinity levels on their farms effectively for the first time.

This is as a result of a donation of the latest technology that measures the salinity of soil – the EM38 system – which the University of the Free State (UFS) is donating to the community.

The unique project was launched by the Department of Soil, Crop and Climate Sciences at the UFS and the Department of Agriculture in the Free State during an information day held at Jacobsdal recently.

The day was attended by members of the Oppermans Community and representatives of the UFS as well as the Department of Agriculture. Mr Sugar Ramakarane, Head of the Department of Agriculture in the Free State, did the welcoming and several academics from the UFS held discussions about various topics related to the salinity levels in soil.

Since the establishment of the Oppermans Community emerging farmers are now for the first time able to accurately monitor the salinity levels on their farms as well as that of irrigation schemes of commercial farms in the area.

“In a region such as the Northern Cape it is very important that the salinity level of soil is monitored properly. As water is administered to crops, salts accumulate in the soil because the roots leave most of the salts in the soil when it transpires. When the salinity of soil increases, the osmotic potential thereof can also increase, which can seriously damage the water intake of crops and can create loss in yield and income,” said Prof. Leon van Rensburg from the Department of Soil, Crop and Climate Sciences at the UFS and leader of the Oppermans Project.

To assist the farming community of Oppermans to apply precision farming and to measure the salinity level of soil more accurately the latest technology that measures salinity in soil – the EM38 – will be donated to the community. Although the system is used throughout the world, the UFS is the only tertiary institution in the country that owns the latest version of this system.

“We are also training two persons from the Oppermans Community as technicians that will monitor the use of the system. The advantage of the donation of the system for the university is that we can gather data that can be used for research purposes by our Master’s and Doctoral students. We also want to see if water-table heights can be measured with this system,” said Prof. Van Rensburg.

According to him the system has several advantages for the community’s emerging farmers. “For the first time the salinity level of soil can now be measured accurately, salt maps can be drawn up, we can advise farmers about the corrections that need to be made and salinity management plans can be compiled,” he said.

The system is very accurate as it takes measurements every 200 mm while it is pulled by a four-wheel motorbike. The readings provide the distribution of salts up to a soil depth of 1 500 mm. “In the past the measuring of salinity levels was time-consuming and the cost thereof was R90 for one sample. The new system is more cost-effective,” stated Prof. Van Rensburg.

The instruments will be handed over to the African Spirit Group of the Oppermans Community, who will then become the owners. The service to farmers will then be managed by an operational group consisting of people from the Oppermans Community, a postgraduate student who can compile salinity maps and Prof. Van Rensburg, who will act as project leader and advisor.

The system will also be made available to farmers at the Riet River and Vaalharts Schemes.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
9 March 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept