Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 March 2025 | Story Andre Damons | Photo Andre Damons
Prof Aliza le Roux
Prof Aliza le Roux, Assistant Dean of the Faculty of Natural and Agricultural Sciences and Professor in the Department of Zoology and Entomology, at the Southern African Mountain Conference (SAMC2025).

Animals in mountainous areas around the world, in particular endangered, vulnerable, and near threatened mammals, are at risk of becoming roadkill as road networks expand further into these previously inaccessible terrains.

These mammals, which fall into the category of conservation risk according to the International Union for Conservation of Nature (IUCN) definitions, include African wild dogs (endangered), lions and leopards (both vulnerable), elephants (endangered), and honey badgers (NT – near threatened). Among the road-killed birds found in these areas are the hooded vulture (critically endangered) and the endangered steppe eagle.

This is according to Prof Aliza le Roux, Assistant Dean of the Faculty of Natural and Agricultural Sciences and Professor in the Department of Zoology and Entomology, who presented research during a session at the Southern African Mountain Conference (SAMC2025). Prof Le Roux, a behavioural ecologist studying how animals respond to risks and opportunities in the environment, did an oral presentation titled Patterns of wildlife-vehicle collision in montane environments during a session on Mountain biodiversity: animals.

The conference, under the patronage of UNESCO and organised by the University of the Free State (UFS) Afromontane Research Unit (ARU) – in partnership with the African Mountain Research Foundation (AMRF) and the Global Mountain Safeguard Research Programme (GLOMOS) – brought together researchers, policy makers, and practitioners from across Southern Africa and beyond. It delved into critical issues around mountain ecosystems, communities, governance, and transboundary cooperation.

For the research, Prof Le Roux, Dr Katlego Mashiane, Lecturer in the UFS Department of Geography, and Dr Clara Grilo from the BIOPOLIS project in Portugal, looked for published data/papers from 1971 to 2024, finding that most of the published literature on roadkill in Africa came from the 21st Century.

 

Heightens risks to wildlife

According to her, they found that amphibians were killed at the highest rate in the mountainous regions, while mammals were killed most frequently in the low-lying regions. Mammalian species classified as near threatened or more vulnerable to extinction on the IUCN Red List were most frequently found in the high-elevation mountains (7,7% of species killed in these areas), but also in low-lying areas (3,8% of mammalian roadkill). About 3% of the birds killed at moderate elevations were also of conservation concern.

“Increased vehicular traffic and better-paved roads in montane environments heighten the risks to wildlife inhabiting these regions, including the potential for more wildlife-vehicle collisions, leading to higher mortality rates. In terms of sheer numbers, many more small species (less than 1 kg in adult weight) are killed than larger species. This is probably because we either don’t see them or don’t care if we hit them. But we do care if our cars collide with something large like an eland – it does damage to us as well as them.”

“Unpredictable weather patterns and sudden topographical changes all contribute to these roads potentially being more hazardous for both drivers and any surrounding wildlife: the ruggedness of these terrains and tortuosity of roads can make it harder for drivers and wild animals to detect one another on mountain roads, increasing the likelihood of collisions,” writes Prof Le Roux and her colleagues.

The researchers estimated the roadkill rates for each observed species and then analysed the correlation with topographic aspects of the study sites. They used the 90m digital elevation model downloaded from the geospatial cloud-computing platform Google Earth Engine and classified ‘high’ elevation mountains as regions lying above 2 000 metres above sea level (masl), ‘moderate’ elevation mountains as lying between 1 500 and 2 000 masl, and ‘low’ regions as areas below 1 500 masl.

 

Limited data

Prof Le Roux and Dr Mashiane also extracted slope and the topographic ruggedness index. Roadkill rates were estimated for 15 different amphibian species, 98 reptilian, 261 avian, and 273 mammalian species, comprising 5 549 individual road kills.

“These findings indicate that roads in mountainous African regions pose a high risk to our indigenous wildlife. The accidents in mountainous areas are something to be aware of, as we are moving further into mountains where there is often vulnerable and unique biodiversity. When we do kill vertebrates through a collision, it is often a species that we would not find in low-lying areas.”

Unfortunately, Prof Le Roux says, they cannot say what the continental patterns are because so little data is available about biodiversity and roadkill patterns in the central and western parts of the continent. The data they found came from only 10 countries, and almost none of the studies took the form of systematic, longitudinal monitoring. The data sets were all ‘snapshots’ of roadkill in specific areas.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept