Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 November 2025 | Story Precious Shamase | Photo Supplied
Zandile Mncube
Dr Zandile Mncube presenting her research at the International Mountain Conference (IMC2025) at the University of Innsbruck, Austria.

In a remarkable milestone for both her academic and personal journey, Dr Zandile Mncube, a 27-year-old newly conferred PhD graduate from the University of the Free State (UFS), recently presented her research at the prestigious International Mountain Conference (IMC2025), hosted by the University of Innsbruck, Austria. The event marked not only her debut on the global research stage but also her first international trip and first flight – an experience she described as transformative. 

 

A mountain of research: From UFS weather stations to the global stage

Dr Mncube's journey to this international platform began with encouragement from Prof Ralph Clark, Director of the Afromontane Research Unit, and Dr Melissa Hansen, Lecturer in the Department of Geography, who recognised her potential and urged her to submit an abstract to the conference. 

"Prof Clark proposed that I write an abstract for this conference," Dr Mncube explained. “I had been managing the UFS weather stations and had just begun using their data, so I based my abstract on that work.” 

Her submission was accepted, earning her the opportunity to showcase her research alongside an impressive array of global scholars. The IMC2025, held biennially, brings together experts from across the world to discuss diverse aspects of mountain studies. Dr Mncube formed part of a strong South African delegation that included two students from UFS and one from the University of Cape Town (UCT).

"It was inspiring to see how diverse and multidisciplinary the field is," she said. "It was good to see that, as South Africans, we do fit into the global research stage and can hold our own through the quality of our work.”  

 

Vision for the future: expanding research horizons 

Having been part of the UFS community since 2017 - serving in various roles from student assistant to her current practical and research position – Dr Mncube is now looking ahead to further her research career.

"I want to explore more on the research side of things," she shared. “While I’ve gained valuable experience that could lead to lecturing, my immediate goal is to deepen my involvement in research and fieldwork within Geography.”   

 

A transformative experience and a call for greater support

Describing her participation at the IMC as a "transformative experience, both professionally and personally," Dr Mncube reflected on how it broadened her understanding of global scientific collaboration and highlighted the vital contribution of African researchers. 

She noted there remain "notable gaps in data and contextual understanding that African researchers are uniquely positioned to address," particularly in underrepresented mountain regions.

Dr Mncube strongly advocates for more South African students to be supported in attending international conferences. She observed that several of her peers at the IMC had earned recognition through the Southern African Mountain Conference 2025 (SAMC), further illustrating the value of regional and international engagement. 

"If more students are supported to attend conferences like IMC, it could open doors for them to engage in global research and collaborations that extend far beyond our borders," she said. 

Expressing her heartfelt appreciation, she concluded by thanking Prof Clark and Dr Hansen for their guidance and support, which made her international debut possible.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept