Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 November 2025 | Story Precious Shamase | Photo Supplied
Zandile Mncube
Dr Zandile Mncube presenting her research at the International Mountain Conference (IMC2025) at the University of Innsbruck, Austria.

In a remarkable milestone for both her academic and personal journey, Dr Zandile Mncube, a 27-year-old newly conferred PhD graduate from the University of the Free State (UFS), recently presented her research at the prestigious International Mountain Conference (IMC2025), hosted by the University of Innsbruck, Austria. The event marked not only her debut on the global research stage but also her first international trip and first flight – an experience she described as transformative. 

 

A mountain of research: From UFS weather stations to the global stage

Dr Mncube's journey to this international platform began with encouragement from Prof Ralph Clark, Director of the Afromontane Research Unit, and Dr Melissa Hansen, Lecturer in the Department of Geography, who recognised her potential and urged her to submit an abstract to the conference. 

"Prof Clark proposed that I write an abstract for this conference," Dr Mncube explained. “I had been managing the UFS weather stations and had just begun using their data, so I based my abstract on that work.” 

Her submission was accepted, earning her the opportunity to showcase her research alongside an impressive array of global scholars. The IMC2025, held biennially, brings together experts from across the world to discuss diverse aspects of mountain studies. Dr Mncube formed part of a strong South African delegation that included two students from UFS and one from the University of Cape Town (UCT).

"It was inspiring to see how diverse and multidisciplinary the field is," she said. "It was good to see that, as South Africans, we do fit into the global research stage and can hold our own through the quality of our work.”  

 

Vision for the future: expanding research horizons 

Having been part of the UFS community since 2017 - serving in various roles from student assistant to her current practical and research position – Dr Mncube is now looking ahead to further her research career.

"I want to explore more on the research side of things," she shared. “While I’ve gained valuable experience that could lead to lecturing, my immediate goal is to deepen my involvement in research and fieldwork within Geography.”   

 

A transformative experience and a call for greater support

Describing her participation at the IMC as a "transformative experience, both professionally and personally," Dr Mncube reflected on how it broadened her understanding of global scientific collaboration and highlighted the vital contribution of African researchers. 

She noted there remain "notable gaps in data and contextual understanding that African researchers are uniquely positioned to address," particularly in underrepresented mountain regions.

Dr Mncube strongly advocates for more South African students to be supported in attending international conferences. She observed that several of her peers at the IMC had earned recognition through the Southern African Mountain Conference 2025 (SAMC), further illustrating the value of regional and international engagement. 

"If more students are supported to attend conferences like IMC, it could open doors for them to engage in global research and collaborations that extend far beyond our borders," she said. 

Expressing her heartfelt appreciation, she concluded by thanking Prof Clark and Dr Hansen for their guidance and support, which made her international debut possible.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept