Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
31 March 2020 | Story Leonie Bolleurs | Photo Gerhard de Jager
Prof Linda Basson recently returned from a three-month research expedition in Antarctica. Here she is, relaxing on the ice with the ever-inquisitive Adelie penguins having a gander at these strangers in their snowy world.
Prof Linda Basson recently returned from a three-month research expedition in Antarctica. Here she is, relaxing on the ice with the ever-inquisitive Adelie penguins having a gander at these strangers in their snowy world.

Very little is known about the parasites of Antarctica, which is a highly productive part of the oceans. These small organisms can be used very successfully to determine the health of this fragile ecosystem.

“Our research data can make significant contributions to the biodiversity of parasites, for a start. The data can also be very valuable to indicate the overall health of this large ecosystem – an ecosystem that drives many of the life-giving processes on our planet.” This is the belief of Prof Linda Basson from the Department of Zoology and Entomology at the University of the Free State (UFS). 

She is an aquatic parasitologist who concentrates on various parasites from a wide range of hosts, including vertebrates (fish and amphibians) and invertebrates (plankton, urchins, starfish, sea cucumbers and red-bait).

Prof Basson, together with PhD student Gerhard de Jager, was invited by Prof Isabelle Ansorge, Head of the School of Oceanography, University of Cape Town, to join her research team on the South African National Antarctic Programme (SANAE) Voyage 59 to Antarctica. 

Widen the scope of research 
“Our aim on this trip was to determine how we can collaborate with the various oceanographers to widen the scope of research normally performed on these voyages, in order to also include parasitological aspects. Once we arrived on the continent of Antarctica, we worked to collect a range of hosts from the Southern Ocean to screen these for the whole array of parasites,” she explains. 

No research of any kind on aquatic parasites has ever been done in Penguin Bukta and Akta Bukta, the specific areas where Prof Basson was based with other scientists and the rest of the Agulhas crew.

She adds: “Our research will contribute to the wider knowledge of parasites in marine environments, but specifically in this area where little to nothing is known.”

A chance of a lifetime 
“Antarctica was literally one of the top research destinations on my bucket list. Travelling to and working in Antarctica is a lifelong dream of mine. It was a chance of a lifetime that I could not miss out on,” says Prof Basson. 

Sharing her experience, she says a typical day on board the SA Agulhas II in Antarctica will start with a cup of good, quality coffee and a look at the prevailing weather on the stern of the ship. 

“One would always be amazed by the beautiful, ceaselessly changing water, the restless sea ice and the impressive ancient ice shelf in very invigorating temperatures, while an ethereal Snow Petrel swirls past and the occasional Adelie penguin comes to gaze and contemplate the presence of this large red structure floating in their habitat and obscuring their view. After tearing yourself away from this, the rest of the day would be spent either in the well-equipped laboratory working through collected samples, or else planning the next exciting collection in the intensely cold water.”

Remarkable journey 
To eternalise memories of this unique experience of almost three months, Prof Basson says that, “One cannot go without a fully charged camera with a large SD card, ready to capture the many facets of this exceedingly fragile but enchanting world of ice and sky, ever changing and all in innumerable shades of white”.

“This truly remarkable journey will forever be associated with a myriad of brilliant highlights.”

Finding it extremely difficult to single out a specific highlight, she listed a long list of memorable events, but as a scientist she will always remember “realising the wealth and cornucopia of microscopic life present in the southernmost of our oceans and seeing this first-hand under the microscope”.

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept