Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 November 2021 | Story Leonie Bolleurs | Photo Tania Allen
Dr Jana Vermaas and Ketshepileone Matlhoko are working on research that leaves your washing clean and fresh without the use of any detergents, which is also beneficial to the environment.

Cold water or hot water? Omo or Skip? Laundry blues is a reality in most households and when you add stains to the equation, then what was supposed to be part of your weekly household routine, becomes frustrating and time consuming. 

Researchers at the University of the Free State (UFS) are conducting research that is putting a whole new environmentally friendly spin on laundry day.

Sustainability and environmental conservation

Dr Jana Vermaas, Lecturer in the Department of Sustainable Food Systems and Development at the UFS, is passionate about textiles and sustainability – almost a decade ago, she conducted a study on the efficacy of anolyte as a disinfectant for textiles.

She describes the process: “During electrochemical activation, a dilute solution of natrium chloride/salt passes through a cylindrical electrolytic cell where the anodic and cathodic chambers are separated. Two separate streams of electrochemically activated water are produced. Anolyte as water was produced at the positive electrode and has a low pH, high oxidation-reduction potential and contains dissolved chloride, oxygen, and hydroxyl radical. It also has an antimicrobial effect.”

The benefits of this process are in line with her enthusiasm for environmental conservation. 

According to Dr Vermaas, the amount of water and chemicals used to clean textile articles is massive. “Chemicals used to disinfect, for example, hospital laundry, are hazardous. Not all laundries in the industry have a closed loop system or try to remove the chemicals before the wastewater is discarded.”

“Different amounts of detergents have various effects on our fauna and flora. Due to their low biodegradability, toxicity, and high absorbance of particles, detergents can reduce the natural water quality, cause pH changes in soil and water, lead to eutrophication (too many nutrients), reduce light transmission, and increase salinity in water sources.”

“But with the catholyte and anolyte process, water returns to its original status, which means that the water solution becomes inactive again after production where it existed in a metastable state while containing many free radicals and a variety of molecules for 48 hours. Thus, no chemicals are left in the wastewater. The water can therefore be recycled, not as potable water but, for example, to flush toilets or to water plants.

“We should do what we can to save water,” she says. 

Should you, like Dr Vermaas, also feel strongly about protecting the environment and want to obtain one of these machines that leaves your washing clean and fresh without the use of any detergents, you will be able to find such an appliance in South Arica. However, it does not come cheap. “It is a bit costly for residential use, but might be more accessible in the future,” states Dr Vermaas, who is of the opinion that it is a more sustainable option for commercial laundries.

Detergency properties and colourfastness 

Recently, more research has been conducted on this topic, but with a focus on the detergency properties of the catholyte to clean different textile fibres (natural and synthetic). Catholyte, she explains, is water produced at the negative electrode with a high pH, low oxidation-reduction potential, containing alkaline minerals. It also has surface active agents that increase the wetting properties, and it is an antioxidant. 

“A master’s student in the department, Ketshepileone Matlhoko, will be submitting her dissertation at the end of November on the possibility of using the catholyte as a scouring agent to clean raw wool,” says Dr Vermaas. 

The department is also conducting studies to investigate the influence of both catholyte and anolyte on colourfastness.

*Graphic: Production of electrolysed water (Nakae and Indaba, 2000). Diagram: Supplied



News Archive

Two UFS architecture students won prestigious PG Bison 1.618 Competition
2017-10-26

 Description: Bison read more Tags: : Stephan Diedericks, Department of Architecture, Margaux Loubser, Kobus du Preez, Zack Wessels, PG Bison 1.168 Competition 

At the PG Bison 1.618 competition awards ceremony
in Rosebank, were from the left:
Camrin Plaatjes from the University of KwaZulu-Natal;
Stephan Diedericks, winner of the competition;
and Margaux Loubser,
the second-place winner. Both Stephan and
Margaux are studying Architecture at the UFS.
Photo: Supplied



Food that reaches its sell-by date in supermarkets is usually disposed of, but has not yet reached its best-before date.  What happens to this food?  According to Stephan Diedericks, the answer to this is for this food to be repurposed.

Not only does Stephan want to prevent the waste of food – in a world where food security is a challenge – but he also won the prestigious PG Bison 1.618 Competition with his entry in which he suggests that gourmet meals be prepared from food that has reached its sell-by date, and then be served in the Delta Recycletorium. 

Students introduced to park lands in urban areas
Diedericks is a student in the Department of Architecture at the University of the Free State (UFS). Second-place winner in this competition was Margaux Loubser, also a UFS student. Another UFS student, Dehan Kassimatis, was a finalist. They received their awards at a ceremony in Rosebank, Johannesburg, earlier this month. 

The competition, now in its 24th year, was created to recognise the future interior and industrial designers, architects, and key decision-makers in the South African construction industry. It is known not only for the prestige it offers its winners, but also for the tradition-defying brief given to the students each year.

According to lecturers Kobus du Preez and Zak Wessels, in the Department of Architecture, the competition introduced the students to parklands in urban areas. He quotes the competition brief: “Rural to urban migration with the development of commercial and residential property elevates the importance of parklands within cities, in creating a refuge from the hustle of daily life.  These areas are leveraged to encourage healthier living, community interaction and environmental awareness.”

Learning experience more important than prizes
The site that was the focus of the competition is the Environmental Centre, Delta Park Heritage Precinct in Johannesburg. Students needed to transform this old building into a vibrant gastronomic restaurant. “The theme and style of the restaurant was for the student to choose,” said Du Preez. 

Loubser called her restaurant Rooted – a wholefood restaurant.  She was influenced by the geometries of the original Art Deco building. Rooted articulates and integrates the space between nature and the building.  Similar to an Art Deco painting or poster, the landscape is abstracted into terraces which are used to grow vegetables organically.  Vertical green screens soften the divide between the building and its surroundings and it provides shade.

“Our students took their clues from the existing environment and integrated it with a single idea, an abstract concept, which impressed the judges,” Du Preez said. 

Although this is a competition that is well reported in the industry press, Du Preez and Wessels agree that the learning experience for students is much more important than winning the contest. The competition’s brief aligned well with the Department of Architecture’s learning content with its urban focus.

Jacques Steyn, a UFS architecture student, came third in the competition in 2015.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept